Мощность трансформатора микроволновой печи
Трансформатор микроволновки МОТ
Для питания магнетрона микроволновой печи традиционно применяется выпрямленное высокое напряжение, получаемое из сетевого при помощи повышающего трансформатора, который так и называется «МОТ» (аббревиатура от английского «Microwave Oven Tranformer» — трансформатор микроволновой печи).
На выходе МОТа (а точнее — на его анодной обмотке) переменное напряжение в районе 2200 вольт складывается с напряжением на проходном конденсаторе удвоителя (емкостью 1 мкф), и подается на анод магнетрона уже в форме пульсирующего напряжения частотой 50 Гц, величиной порядка 4000-4500 вольт — этого как раз достаточно для нормальной работы магнетрона, который является весьма мощным электронным прибором. Магнетрон здесь включен параллельно высоковольтному диоду, который служит в качестве клапана в схеме удвоителя напряжения.
Накал магнетрона также обеспечивается МОТом, для этой цели здесь имеется дополнительная вторичная обмотка (накальная), состоящая из 3 витков, и выдающая от 2,5 до 4,6 вольт при токе до 20 ампер. Для каждого магнетрона МОТ подбирается индивидуально, в связи с чем и параметры обмоток МОТов от разных микроволновок будут немного отличаться от модели к модели, в большую или в меньшую сторону. Так или иначе, именно МОТ остается наиболее тяжелым элементом любой микроволновой печи, и именно от него зависит то, какую мощность сможет обеспечить магнетрон в данной микроволновке.
Многие из тех, кому довелось видеть МОТ или даже посчастливилось держать его в руках, наверняка обратили внимание на особенность, заключающуюся в том, что габариты МОТа очень скромны, несмотря на мощность микроволновки, в которой он был установлен.
Например, если исходить из обычных ориентиров касательно габаритной мощности сетевого трансформатора, то окажется, что МОТ имеет в 2 раза меньший по объему Ш-образный магнитопровод, чем следовало бы применить при столь существенной рабочей мощности микроволновки. Это значит, что под своей обычной нагрузкой трансформатор данного вида работает в не совсем обычном режиме.
Давайте же разберемся, что отличает МОТ от других сетевых трансформаторов.
Действительно, трансформатор микроволновки не работает все время на чисто активную нагрузку. Цепь магнетрона для переменного тока является по большому счету нагрузкой емкостной. Именно по этой причине между обмотками трансформатора микроволновки установлены дополнительные конструктивные элементы магнитопровда — шунты.
Благодаря наличию шунтов, рабочий магнитный поток имеет возможность частично замыкаться вне вторичной обмотки, что равноценно включению в рабочую цепь балластного дросселя. По этой причине, именно данный конкретный МОТ, именно с этим конкретным магнетроном в паре будет работать идеально, и не выйдет из строя. Однако работать МОТ будет все равно на пределе своих возможностей, хотя и не влетая в опасное насыщение. Статистика свидетельствует, что чаще всего из строя выходят магнетроны, но не МОТы.
Любители катушек Николы Тесла на искровом промежутке часто используют МОТы в качестве высоковольтных сетевых трансформаторов. Для этого несколько МОТов соединяют анодными обмотками последовательно, а первичные обмотки включают параллельно. Часто для получения большей мощности от МОТов, тесластроители выбивают из МОТов шунты, и даже погружают трансформаторы в масло.
Конечно, и без шунтов МОТ способен работать даже на мощную активную нагрузку, но такая работа продлится не более нескольких минут, и сильный перегрев не заставит себя долго ждать. Поэтому, если МОТ используется не по прямому назначению, да еще и без шунтов, — имеет смысл применять принудительное его охлаждение.
Внимание! Напряжение вторичной обмотки МОТа смертельно опасно и работать с ним нужно предельно аккуратно.
Трансформатор СВЧ микроволновки — БП УМ передатчика
В kb усилителе мощностью до 500 Вт изготовление источника питания анодной цепи генераторной лампы особых трудностей не вызывает. А вот более мощный усилитель потребует громоздкого и довольно дорогого силового трансформатора, поэтому понятен интерес радиолюбителей к любым другим решениям, в том числе, с использованием силового трансформатора от СВЧ печи (СВЧТ). Малые габариты такого трансформатора достигаются за счет большого тока в первичной обмотке, но при этом ухудшается тепловой режим и возрастает расход энергии.
Недавно мне случайно и недорого достался один из таких трансформаторов ( tr -91 531485/3). На бирке была указана его мощность — 1500 Вт! Разумеется, возникло желание попробовать применить этот трансформатор в усилителе мощности.
Известно, что такие трансформаторы сильно греются. Для снижения тока холостого хода некоторые радиолюбители доматывают первичную обмотку. Однако это приводит к уменьшению габаритной мощности трансформатора и напряжения на вторичной обмотке. Кроме того, не все трансформаторы от СВЧ печей можно разобрать — как правило, их пластины сварены. Выключать трансформатор в паузах при передаче практически невозможно. Это можно сделать только при переходе в режим приема, но каждое включение в режим передачи будет происходить с задержкой и сопровождаться броском тока.
В несколько раз уменьшить энергопотребление и нагрев СВЧТ можно с помощью несложной схемы автоматики (рис.1). В авторском варианте применялся СВЧТ с магнитными шунтами.
Когда усилитель не потребляет мощность по анодной цепи, за счет включения дополнительного реактивного сопротивления(дросселя l 1) в цепи первичной обмотки СВЧТ ток холостого хода уменьшается примерно в 10 раз, а напряжение на вторичной обмотке — только в 2 раза. При появлении сигнала на входе усилителя мощности за счет шунтирования дросселя контактами реле К2.1 трансформатор переходит в штатный режим, обеспечивая требуемую мощность. Одновременно к датчику входного сигнала (резистору r 1 ) подключается дополнительный резистор r 5. За счет этого суммарное сопротивление датчика уменьшается. Теперь, как только будет снята нагрузка, и ток в первичной обмотке уменьшится до штатного тока холостого хода — 2,44 А (с магнитными шунтами) для данного трансформатора, его можно переключить в дежурный режим. Момент перехода регулируется с помощью резистора r 6.
Если в СВЧТ шунты удалены, то придется уточнить данные трансформатора Т1 и сопротивление резисторов r 1 и r 5. Транзисторы vt 1 и vt 2 работают в режиме переключения. Транзистор vt 1 открывается, когда на резисторе r 1 создается падение напряжения за счет тока в первичной обмотке трансформатора Т2 при появлении нагрузки в цепи вторичной обмотки. Порог открывания vt 1 регулируется с помощью резистора r 2. Контакты К1.1 подключают резистор r 3, соединенный с базой транзистора vt 2, к «плюсу» источника питания, открывая vt 2. Когда контакты К2.1 реле К2 шунтируют дроссель l 1, на первичной обмотке Т2 появляется полное напряжение 220 В. Мощность резисторов r 1 и r 5 (в данном случае 2 — 3 Вт) определяется, как обычно, максимальным током, протекающим через них. Напряжение насыщения транзистора vt 1 — 0,2 В. При переходе трансформатора в рабочий режим на резисторе r 1 падают сотые доли вольта, поэтому трансформатор Т1 используется для повышения напряжения.
При повторении устройства прежде всего надо определить ток в первичной обмотке силового трансформатора Т2 (СВЧТ) при разных нагрузках. Для этого собирается испытательная установка, схема которой приведена на рис.2.
Вторичная обмотка трансформатора Т2 подключается к вто ричной обмотке нагрузочного трансформатора ТЗ габаритной мощностью 1 кВт. Первичная обмотка этого трансформатора нагружается лампами накаливания разной мощности, а его вторичная обмотка уже является заметной нагрузкой для трансформатора Т2, что объясняется меньшим количеством витков вторичной обмотки ТЗ по сравнению с Т2. Поэтому на первичной обмотке ТЗ напряжение составляет 255 В. В СВЧТ установлены 2 магнитных шунта, ограничивающих ток. Измерения проводились с шунтами и без них. Шунты расположены между первичной и вторичной обмотками и закреплены затвердевшим герметиком. Тем не менее, их легко удалить. Для этого СВЧТ закрепляется в тисках за боковые поверхности, шунты выбиваются сильными ударами с помощью пробойника. Если перед этим не удалить накальную обмотку магнетрона, ее можно повредить! Так, в рассматриваемом случае шунт вышел вместе с обмоткой, при этом все 4 витка обмотки были разорваны.
После удаления шунтов трансформатор Т2 в течение 0,5 часа испытывался на нагрев при токе 5,4 А в первичной обмотке. Нагрев составил 70°С. Результаты измерений приведены в таблице.
Итак, можно сделать несколько выводов:
— шунты ограничивают ток до 50% в зависимости от нагрузки;
— не всегда шунты следует удалять, как рекомендуется в [1]. Если трансформатор используется не на полную мощность (например, при работе ssb ), и «просадка» напряжения еще находится в допустимых пределах, то их удаление при ведет к заметному ухудшению теплового режима;
— после удаления шунтов повышается напряжение, возможно, выше, чем требуется для питания анода лампы. Для снижения напряжения в [1] рекомендуется домотать первичную обмотку, а это по эффекту равнозначно установке магнитного шунта ;
— принудительное охлаждение трансформатора (особенно с удаленными шунтами) при длительном включении под нагрузкой является обязательным;
— потребляемая мощность на хол остом ходу без шунтов составляет почти 800 Вт, поэтому затраты на ограничение мощности на холостом ходу быстро окупаются.
Первичная обмотка трансформатора Т1 (рис.1) содержит 50 витков, вторичная —250, диаметр провода — 0,2 мм. «Железо» может быть любым (подойдет, например, от трансформаторов транзисторных приемников). Конденсатор С1 — оксидно-полупроводниковый (К53-16), имеющий минимальную утечку. Следует выбирать диоды vd 1 — vd 4 с минимальными прямым падением напряжения. В схеме применены диоды Шотки (1 n 5819), но это не обязательно. Кроме транзистора МП21В, успешно были испытаны МП42Б и МП16, но можно применить другие германиевые транзисторы. При использовании транзистора МП42Б напряжение питания на него подавалось от источника 24 В через делитель напряжения 330 0м/470 Ом на резисторах мощностью 1 Вт (этот вариант на рис.1 не показан). Транзистор vt 1 следует выбирать с возможно меньшим напряжением насыщения и большим коэффициентом передачи тока в режиме малого сигнала. Транзистор vt 2 — КТ829А. Гальваническая развязка позволяет применить любой другой подходящий транзистор, в этом случае надо уточнить сопротивление резистора r 4 для надежного и быстрого перехода транзистора в режим насыщения.
Реле К1 — РЭС-15 на напряжение 10 В или герконовое, подходящее по напряжению срабатывания и сопротивлению обмотки. Конденсаторы С1 и С2 устраняют «дребезг» контактов реле. Реле К2 — К4 — малогабаритные ( rp 010024, производства Австрии). Их выбор ничем не ограничен — все зависит от возможности приобрести подходящие реле (важно, чтобы они были одинаковыми). Диоды vd 5 и vd 6 — Д220, но с выбранными реле и транзисторами применять их не обязательно. Параметры дросселя l 1 определяются конкретным экземпляром силового трансформатора. В авторском варианте используется магнитопровод УШ 14×21. Число витков — 500. Диаметр провода определяется по формуле:
где d — в миллиметрах;
i— в миллиамперах.
Для тока 320 мА диаметр должен составлять 0,357 мм. За 1 час работы дроссель нагревается до 40 — 45°С. Увеличив число витков, можно пропорционально уменьшить ток.
Интересно, что при токе 320 мА через час работы на холостом ходу повышение температуры «железа» СВЧТ практически не наблюдается, в то время как в [1] отмечается, что «40. 45 градусов (на холостом ходу через час) сердечник СВЧТ достигает лишь при холостых токах менее 200 мА. Возможно, расхождение связано с влиянием на нагрев габаритной мощности трансформатора, маркой электротехнической стали или общими теоретическими предположениями, которые в данном случае не подтверждаются практикой.
Ток холостого хода СВЧТ без шунтов с дросселем l 1 составил 360 мА, при этом напряжение на вторичной обмотке Т2 — 1600 В.
Испытания подтвердили работоспособность схемы, но некоторые вопросы остались:
— долговечность работы контактов реле К2;
— кратковременный и не всегда проявляющийся «дребезг» контактов К2.1 из-за разброса времени срабатывания реле К2 — К4, хотя решается эта проблема просто — применением реле с тремя груп пами контактов (например, реле Р15 польского призводства) или тщательной отладкой схемы;
— аварийное шунтирование дросселя l 1 в случае несрабатывания контактов К2.1 в рабочем режиме (хотя это вряд ли случится — скорее, контакты К2.1 «залипнут» в положении шунтирования дросселя l 1).
1. БП из трансформатороа СВЧ печей ( http :// dl 2 kq . de / )
Нагреватель из микроволновки
В кладовке долго лежала без дела старая сломанная микроволновка. Решил из нее сделать, что нибудь полезное. В микроволновке есть мощный трансформатор, если его правильно доработать, то получится мощный резистивный нагреватель для нагрева заржавевших гаек, и других небольших металлических деталей.
Для этой самоделки подойдет практически любой трансформатор от микроволновой печи, даже неисправный, главное чтобы была цела первичная сетевая обмотка. Мне достался 700 ваттный экземпляр, впрочем чем мощнее тем лучше.
Переделка трансформатора заключается в удалении вторичной обмотки. И намотке двух витков медного провода большого сечения. То есть нам надо перемотать трансформатор таким образом, чтобы понизить выходное напряжение до 1.2 вольта, а силу тока повысить до 600 ампер.
Приступим к делу, берем ножовку по металлу и пилим вторичную обмотку. Пилить надо с двух сторон и очень аккуратно, чтобы случайно не повредить сетевую обмотку.
Теперь надо закрепить трансформатор в тисках и через металлическую наставку с помощью молотка выбить внутреннюю часть вторичной обмотки.
Новую обмотку надо мотать толстым медным проводом. Идеальным вариантом будет сварочный кабель с сечением жилы 16 мм 2 толщина жилы по меди около пяти миллиметров. Желательно брать сварочный кабель в толстой резиновой изоляции.
Делаем два витка. Сварочный кабель плотно входит в окно трансформатора. На этом переделка трансформатора от микроволновки завершена. На концы сварочного кабеля надо одеть медные трубчатые клеймы и расплескать.
Измеряем напряжение на выходе, с двух витков сварочного кабеля получилось 1.2 вольта, а сила тока при такой толщине кабеля будет примерно 600 ампер.
Ну и конечно тесты. Тестировать будем на гайке, собственно для нагрева гаек эта самоделка и предназначена. Буквально за пару минут гайка М8 нагрелась до бела. А, это пожалуй хороший результат.
Нагреватель из микроволновки будет очень хорошим помощником, как для домашнего мастера, так для мастера по ремонту автомобилей. Ведь очень часто приходится откручивать заржавевшие гайки методом нагрева с резким охлаждением холодной водой.
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать нагреватель из микроволновки
Устройство микроволновки
Устройство и конструкция СВЧ-печи
Главная деталь в любой СВЧ печи – это магнетрон. Магнетрон – это такая специальная вакуумная лампа, которая создаёт СВЧ-излучение. СВЧ-излучение весьма интересным образом воздействует на обычную воду, которая содержится в любой пище.
При облучении электромагнитными волнами частотой 2,45 ГГц молекулы воды начинают колебаться. В результате этих колебаний возникает трение. Да, обычное трение между молекулами. За счёт трения выделяться тепло. Оно то и разогревает пищу изнутри. Вот так вкратце можно объяснить принцип действия микроволновки.
Конструкция микроволновки.
Конструктивно микроволновая печь состоит из металлической камеры, в которой приготавливается пища. Камера снабжена дверцей, которая не позволяет излучению выйти наружу. Для равномерного разогрева пищи внутри камеры установлен вращающийся столик, который приводится в движение мото-редуктором (мотором), который сокращённо называется T.T.Motor (Turntable motor).
СВЧ-излучение генерируется магнетроном и через прямоугольный волновод подаётся в камеру. Для охлаждения магнетрона во время работы служит вентилятор F.M (Fan motor), который прогоняет холодный воздух через магнетрон. Далее нагретый воздух от магнетрона через воздуховод направляется в камеру и также используется для нагрева пищи. Через специальные неизлучающие отверстия часть нагретого воздуха и водяной пар выводится наружу.
В некоторых моделях СВЧ-печей для формирования равномерного нагрева пищи используется диссектор, который устанавливается в верхней части камеры микроволновки. Внешне диссектор напоминает вентилятор, но он предназначен для создания определённого типа СВЧ-волны в камере так, чтобы осуществлялся равномерный прогрев пищи.
Электрическая схема микроволновки.
Давайте взглянем на упрощённую электрическую схему рядовой микроволновки (кликните для увеличения).
Как видим, схема состоит из управляющей части и исполнительной. Управляющая часть, как правило, состоит из микроконтроллера, дисплея, кнопочной или сенсорной панели, электромагнитных реле, зуммера. Это «мозги» микроволновки. На схеме всё это изображено отдельной платой с надписью Power and Control Curcuit Board . Для питания управляющей части микроволновки используется небольшой понижающий трансформатор. На схеме он отмечен как L.V.Transformer (показана только первичная обмотка).
Микроконтроллер через буферные элементы (транзисторы) управляет электромагнитными реле: RELAY1, RELAY2, RELAY3. Они включают/выключают исполнительные элементы СВЧ-печи в соответствии с заданным алгоритмом работы.
Исполнительные элементы и цепи — это магнетрон (Magnetron), мото-редуктор столика T.T.Motor (Turntable motor), охлаждающий вентилятор F.M (Fan Motor), ТЭН гриля (Grill Heater), лампа подсветки O.L (Oven Lamp).
Особо отметим исполнительную цепь, которая является генератором СВЧ-излучения.
Начинается эта цепь с высоковольтного трансформатора ( H.V.Transformer ). Он самый здоровый в микроволновке. Собственно, это и не удивительно, ведь через него нужно прокачать мощность в 1500 — 2000 Вт (1,5 — 2 kW), необходимых для магнетрона. Выходная же (полезная) мощность магнетрона 500 — 850 Вт.
К первичной обмотке трансформатора подводится переменное напряжение сети 220V. С одной из вторичных обмоток снимается переменное напряжение накала 3,15V. Оно подводится к накальной обмотке магнетрона. Накальная обмотка необходима для генерации (эмиссии) электронов. Стоит отметить, что ток, потребляемый этой обмоткой, может достигать 10A.
Другая вторичная обмотка высоковольтного трансформатора, а также схема удвоения напряжения на высоковольтном конденсаторе ( H.V.Capacitor ) и диоде ( H.V. Diode ) создаёт постоянное напряжение в 4kV для питания анода магнетрона. Ток анода небольшой и составляет где-то 300 мА (0,3A).
В результате электроны, эмитированные накальной обмоткой, начинают своё движение в вакууме.
Особая траектория движения электронов внутри магнетрона создаёт СВЧ-излучение, которое и нужно нам для нагрева пищи. СВЧ-излучение отводится из магнетрона с помощью антенны и поступает в камеру через отрезок прямоугольного волновода.
Вот такая несложная, но весьма изощрённая схема является неким СВЧ-нагревателем. Не стоит забывать, что сама камера СВЧ-печи является элементом данного СВЧ-нагревателя, так как представляет, по сути, резонатор, в котором возникает электромагнитное излучение.
Кроме этих элементов в схеме микроволновой печи есть множество защитных элементов (см. термовыключатели KSD и аналоги.). Так, например, термовыключатель контролирует температуру магнетрона. Его штатная температура при работе где-то 80 0 – 100 0 C. Этот термовыключатель крепится на магнетроне. По умолчанию он не показан на упрощённой схеме.
Другие защитные термовыключатели подписаны на схеме, как OVEN THERMAL CUT-OUT (устанавливается на воздуховоде), GRILL THERMAL CUT-OUT (контролирует температуру гриля).
При наличии нештатной ситуации и перегреве магнетрона термовыключатель размыкает цепь, и магнетрон перестаёт работать. При этом термовыключатель выбирается с небольшим запасом — на температуру отключения 120 – 145 0 С.
Весьма важными элементами микроволновой печи являются три переключателя, которые встроены в правый торец камеры СВЧ-печи. При закрытии передней дверцы два переключателя замыкают свои контакты (PRIMARY SWITCH – главный выключатель, SECONDARY SWITCH– вторичный выключатель). Третий – MONITOR SWITCH (контрольный выключатель) – размыкает свои контакты при закрытии дверцы.
Неисправность хотя бы одного из этих выключателей приводит к неработоспособности микроволновки и срабатыванию плавкого предохранителя (Fuse).
Чтобы снизить помехи, которые поступают в электросеть при работающей СВЧ-печи, имеется сетевой фильтр — NOISE FILTER.
Дополнительные элементы микроволновки.
Кроме базовых элементов конструкции, микроволновка может быть оснащена грилем и конвектором. Гриль может быть выполнен в виде нагревательного элемента (ТЭН’а) или инфракрасных кварцевых ламп. Эти элементы микроволновки очень надёжны и редко выходят из строя.
Нагревательные элементы гриля: металло-керамический (слева) и инфракрасный (справа).
Инфракрасный нагреватель представляет собой 2 последовательно включенные инфракрасные кварцевые лампы на 115V (500 — 600W).
В отличие от микроволнового нагрева, который происходит изнутри, гриль создаёт тепловое излучение, которое разогревает пищу снаружи внутрь. Гриль разогревает пищу медленнее, но без него невозможно приготовить поджаристую курочку .
Конвектор — это, не что иное, как вентилятор внутри камеры, который работает в паре с нагревателем (ТЭН’ом). Вращение вентилятора обеспечивает циркуляцию горячего воздуха в камере, что способствует равномерному прогреву пищи.
Про фьюз-диод, высоковольтный конденсатор и диод.
Элементы в цепи питания магнетрона обладают интересными свойствами, которые нужно учитывать при ремонте микроволновки.
Так, по умолчанию, высоковольтный конденсатор (H.V.Capacitor) имеет встроенный резистор.
Он служит для разряда конденсатора. Дело в том, что конденсатор находится под высоким напряжением (2 кВ), и поэтому после выключения СВЧ-печи требуется его разряд. Это предохранительная мера. Также бывает, что резистор внутри конденсатора перегорает, и конденсатор не разряжается. Поэтому перед проведением ремонта микроволновки рекомендуется принудительно разряжать конденсатор на корпус.
Внешний вид высоковольтного конденсатора 1.0µF * 2100V AC.
Высоковольтный диод (H.V. Diode) является комбинированным элементом и состоит из целой вереницы последовательно включенных диодов. Это позволяет составному диоду работать с высоким напряжением. Но в этом кроется подвох. Дело в том, что протестировать такой диод стандартной методикой проверки не удастся. Мультиметр просто не сможет «открыть» такой диод из-за того, что пороговое (прямое) напряжение отпирания (VF) диодов складываются. В результате в прямом и обратном включении высоковольтный диод будет иметь высокое сопротивление.
Так, например, для диода HVR-1X3 максимальное прямое напряжение (VF) составляет 11V. Если учесть, что обычно падение напряжения на переходе в прямом включении (VF) у кремниевых диодов составляет 1 — 1.1V, то получается, что в диоде HVR-1X3 ориентировочно смонтировано 10 последовательно включенных диодов.
Максимальное постоянное обратное напряжение такого диода — 12kV!
В некоторых микроволновых печах параллельно высоковольтному конденсатору устанавливается фьюз-диод (защитный диод). По сути, фьюз-диод — это двунаправленный высоковольтный супрессор. Он служит для того, чтобы защитить конденсатор от завышенного рабочего напряжения, которое чревато выходом из строя последнего. Но на практике чаще бывает так, что он сам и выходит из строя. В таком случае ремонтники просто удаляют его из цепи, как ненужный аппендикс. На деле оказалось, что микроволновки прекрасно работают и без такого диода.
Для тех, кто желает более детально разобраться в устройстве СВЧ-печей, подготовлен архив с сервисными инструкциями микроволновых печей (Daewoo, SANYO, Samsung, LG). В инструкции приведены принципиальные схемы, схемы разборки, рекомендации по проверке элементов, список комплектующих.
Также рекомендуем ознакомиться с книгой «Ремонт микроволновых печей».