rahada.ru

Строительный журнал
11 просмотров
Рейтинг статьи
1 звезда 2 звезды 3 звезды 4 звезды 5 звезд
Загрузка...

Чем отличаются углеродистые стали от легированных

Углеродистые стали: особенности, классификация, обработка и область применения

Углеродистая сталь – это металлургические композиции с низким содержанием добавок и высоким содержанием железа – до 99 ½ %. Этот материал высоко востребован в различных сферах промышленности, чем объясняется его высокая доля в производстве – до 80%. Сегодня разработано около 2 тысяч марок. Структура материала зависит от содержания в нем углерода. Изменяя процентное соотношение можно влиять на такие характеристики, как твердость, текучесть, пластичность и плотность. Критичным является показатель углерода в составе материала в 0,8%.

Относительно этого показателя УС различают:

  • если С менее 0,8%, в структуре материала присутствует феррит и перлит;
  • на уровне содержания С (углерода) в 0,8% для материала характерна перлитная структура;
  • при содержании С более 0,8% в структуре появляется цементит.

Общая тенденция с повышением содержания С выражается в повышении прочности, ударной вязкости и порога хладноломкости, но пластичность проката снижается.

Классификация углеродистых сталей

Кроме классификации по структурным параметрам,их принято различать по технологии получения:

  • электрические УС;
  • мартеновские;
  • кислородно-конвертерные.

По уровню раскисления подразделяют материал:

По качеству, в соответствии с наличием и объемам вредных примесей железный сплав бывает:

  • обычного качества;
  • качественные стали.

По сфере использования УС бывают:

  • обычные;
  • инструментальные;
  • конструкционные.

По наличию и объемам С в углеродистом железном сплаве материал классифицируют:

  • высокоуглеродистые стали марки с содержанием С более 0,65%;
  • среднеуглеродистые – от 0,25 до 0,6%;
  • низкоуглеродистые стали марки с содержанием С до 0,25%.

Чем выше показатели углерода, тем тверже и прочнее материал, но и выше его хрупкость. Маркировка материала напрямую связана с его назначением:

  • Обычного качества обозначают условным буквенным обозначением Ст. Далее следуют цифры от 1 до 7, которые показывают содержание С (углерода), кратное 10. Производства железных сплавов этой группы регламентирует ГОСТ380-85. Дополнительно эти материалы принято различать по группе поставок: А, Б и В. Это обозначение указывается перед маркой (группа А не указывается). Для А – стабильны механические свойства, для Б стабильны механический состав, для В стабильны свойства и состав.
  • Конструкционные УС регламентирует ГОСТ380-88, маркировка осуществляется цифрами: от 08 и до 85. Эти цифры информируют о содержании С (углерода) в материале в сотых долях %. Если железный сплав характеризуется увеличенным содержанием марганца, в конце маркировки указывается Г.
  • Инструментальные УС регламентирует ГОСТ1435-54 и 5952-51. Этот железный сплав относится к качественным, и маркируется буквой У. Далее следуют цифры, которые показывают объемы углерода в десятых долях %. Существует подгруппа высшего качества, в этом случае обозначение завершается буквой А. Им характерно повышенное содержание углерода.

В обозначении марки принято указывать степень раскисления: пс или кс.

Процент С в составе инструментальной стали обуславливается ее применение. У7 — для изготовления кузнечных молотов, штампов и зубил, У8 идет на изготовления инструментария для работы с камнем и металлом, У9 – оптимален для производства штемпелей и кернеров. Последующие модификации используют для выпуска полотен ножовок, сверл, плашек, резцов.

Отличие углеродистых сталей от легированных

Марки УС различают технологические процессы и использование различных добавок. Так чем отличаются углеродистые стали от легированных, если в эти железные сплавы также добавляются элементы, изменяющие механические, эксплуатационные и технологические параметры:

  • В состав углеродистых железных сплавов входят железо, углерод и нормальные примеси, которые бывают полезными и вредными. К первым относится марганец и кремний. Вредные примеси – это сера и фосфор.
  • В состав материала не входят легирующие добавки, которые изменяют свойства, такие как: молибден, титан, вольфрам и другие.
  • УС не предназначены для специального использования, это общепромышленный материал.
  • В сравнении с легированными материалами, углеродистые сплавы имеют более низкие технологические и эксплуатационные параметры, в том числе твердость и теплостойкость.

Область применения углеродистых сталей

Сфера применения УС определяется видом. Так, для холодной деформации и горячей ковки используется малоуглеродистая сталь, марки ее отличаются высокой пластичностью. Железные сплавы со средним содержанием углерода немногим отличаются по показателям текучести и пластичности, но его прочность уже выше. Они актуальны для производства элементов конструкций и механизмов, которые будут эксплуатироваться в обычных условиях. УС с высоким содержанием углерода обладают высокой прочностью, из них изготавливают различный инструмент и измерительные приборы. УС обычного качества используется на производстве листового материала, швеллеров, прутьев, балок и других изделий. Из нее выполняют элементы машин и металлические конструкции.

Обработка углеродистых сталей

Основными видами обработки УС являются: отжиг, закалка, нормализация, старение и отпуск.

  • Углеродистые стали обыкновенного качества. Сплав группы А поставляются для изделий, которые не подвергаются обработке. Группа Б – это материалы, которые предназначены для штамповки, ковке, а иногда и температурной обработке. Группа В – это сплавы, которые могут обрабатываться методом сварки.
  • Сталь углеродистая качественная. Этот материал можно подвергать химикотермической обработке, нормализации, холодной механической обработке, высадке, штамповке и обработке давлением. Особенности технологического процесса зависят от конкретной марки.

Одним из главных преимуществ этого железного сплава является его невысокая стоимость. Именно этот фактор обуславливает широкую применяемость материала.

Чем качественные углеродистые стали отличаются от сталей обыкновенного качества? Как маркируют качественные стали, углеродистые, легированные?

Сталь — деформируемый (ковкий) сплав железа с углеродом (до 2,14%) и другими элементами. Получают, главным образом, из смеси чугуна со стальным ломом в кислородных конвертерах, мартеновских печах и электропечах. Сплав железа с углеродом, содержащий более 2,14% углерода, называют чугуном.

Классификация сталей и сплавов производится:

по химическому составу;

по структурному составу;

по качеству (по способу производства и содержанию вредных примесей;

по степени раскисления и характеру затвердевания металла в изложнице;

Читать еще:  Как разрезать керамогранитную плитку в домашних условиях

По химическому составу углеродистые стали делят в зависимости от содержания углерода на следующие группы:

малоуглеродистые — менее 0,3% С;

среднеуглеродистые — 0,3-0,7% С;

высокоуглеродистые — более 0,7 %С.

Для улучшения технологических свойств стали легируют. Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Cr, Ni, Mo, Wo, V, Al, B, Ti и др.), а также Мn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.

В легированных сталях их классификация по химическому составу определяется суммарным процентом содержания легирующих элементов:

низколегированные — менее 2,5%;

высоколегированные — более 10%.

Легированные стали и сплавы делятся также на классы по структурному составу:

в отожженном состоянии — доэвтектоидный, заэвтектоидный, ледебуритный (карбидный), ферритный, аустенитный;

в нормализованном состоянии — перлитный, мартенситный и аустенитный.

К перлитному классу относят углеродистые и легированные стали с низким содержанием легирующих элементов, к мартенситному — с более высоким и к аустенитному — с высоким содержанием легирующих элементов.

По качеству, то есть по способу производства и содержанию вредных примесей, стали и сплавы делятся на четыре группы:

Обыкновенного качества (рядовые)

Стали обыкновенного качества. Стали обыкновенного качества (рядовые) по химическому составу -углеродистые стали, содержащие до 0,6% С. Эти стали выплавляются в конвертерах с применением кислорода или в больших мартеновских печах. Примером данных сталей могут служить стали СтО, СтЗсп, Стбкп.

Стали обыкновенного качества, являясь наиболее дешевыми, уступают по механическим свойствам сталям других классов.

Стали качественные. Cтепень раскисления и характер затвердевания металла в изложнице.

Углеродистые стали обыкновенного качества и качественные по степени раскисления и характеру затвердевания металла в изложнице делятся на спокойные, полуспокойные и кипящие. Каждый из этих сортов отличается содержанием кислорода, азота и водорода. Так в кипящих сталях содержится наибольшее количество этих элементов.

Стали высококачественные. Стали высококачественные выплавляются преимущественно в электропечах, а особо высококачественные — в электропечах с электрошлаковым переплавом (ЭШП) или другими совершенными методами, что гарантирует повышенную чистоту по неметаллическим включениям (содержание серы и фосфора менее 0,03%) и содержанию газов, а следовательно, улучшение механических свойств. Это такие стали как 20А, 15Х2МА.

Стали особовысококачественные. Особовысококачественные стали подвергаются электрошлаковому переплаву, обеспечивающему эффективную очистку от сульфидов и оксидов. Данные стали выплавляются только легированными. Их производят в электропечах и методами специальной электрометаллургии. Содержат не более 0,01% серы и 0,025% фосфора. Например: 18ХГ-Ш, 20ХГНТР-Ш.

Нелегированные конструкционные. Качественные конструкционные стали в соответствии с ГОСТ 1050^88 обозначают двузначным числом, указывающим примерное содержание углерода в стали, умноженное на сто. Так, сталь с содержанием углерода 0,07-0,14% обозначается 10, сталь с содержанием углерода 0,42-0,50% -45, а сталь с углеродом 0,57-0,65% — 60. При этом для сталей с С 2 . Для создания новых современных машин такой прочности недостаточно. Необходимы стали с пределами прочностиу в = 1500 — 2000 МПа. Для этих целей применяют комплексно-легированные и мартенситостареющие стали (см. табл.).

Характеристики высокопрочных легированных сталей

Сталь низкоуглеродистая и ее основные характеристики

Сталь низкоуглеродистая – это сплав, не содержащий легируемых элементов, имеющий примеси и малое содержание углерода, до 0,25%. В составе данного сплава присутствуют марганец и кремний, однако в силу малого процентного содержания (марганец – не больше 1%, кремний – не выше 0,8%), не оказывают ощутимого легирующего воздействия на материал. Сталь низкоуглеродистая отличается мягкостью и малым содержанием марганца.

Этот сплав из-за своей мягкости не позволяет точно обрабатывать поверхности, однако его мягкость, вязкость и пластичность дают возможность создавать цементируемые заготовки и детали для последующей сварки/цементации. Обрабатываемость сплава очень плохая, поверхность обрабатываемой детали имеет много шероховатостей. Выполнение точной обработки достаточно затруднительное.

Свойства низкоуглеродистой стали

Свойства низкоуглеродистой стали не имеют высоких показателей прочности. Пластичность и вязкость напротив — высокие. Марки низкоуглеродистой стали иногда предназначаются для изготовления цементуемых изделий, которые нуждаются в дополнительной цементации для достижения необходимой твердости и придания им износоустойчивости посредством дальнейшей обработки. Изделия из такой стали достаточно хорошо свариваются и куются.

Свойства низколегированной стали не позволяют выполнять полноценные работы с этим металлом. Однако, если провести процесс нормализации и холодного волочения, значительно можно увеличить обрабатываемость поверхности. Благодаря хорошей пластичности (5 = 33…23%), низкоуглеродистые стали можно успешно подвергать холодной деформации, при этом не теряются механические свойства, так как местное перенапряжение равномерно распределяется и трещины не образуются. Такая сталь слабо поддается закаливанию и хорошо сваривается.

Свойства низкоуглеродистой стали имеют ряд недостатков:

  • низкая прочность Те = 330…460 МПа, Сто,2 = 200…280МПа;
  • малая ударная вязкость;
  • очень чувствительная к механическому старению, так как при повторных нагрузках она чувствует концентрацию напряжения, поэтому из нее не изготавливают изделия, подвергающиеся повторным нагрузкам.

Марки низкоуглеродистой стали, их основные сферы применения

Марка низкоуглеродистой стали в зависимости от своего состава имеет отдельные назначения в промышленности. К данному типу сплава относят 05 кп, 08, 10, 10 пс, которые активно используются для производства шайб, прокладок и других малонагруженных элементов конструкций и машин. В зависимости от того, какая марка низкоуглеродистой стали, сплав находит применение в разных отраслях. Так, высокую устойчивость перед статической водородной усталостью демонстрируют:

Следующие марки низкоуглеродистой стали применяются как цементируемые:

При изготовлении зубчатых колес с последующей цементацией применяют:

  • ЭП620;
  • ЭП355;
  • 03 используются как шихтовая заготовка и выпускаются в виде прутков различного размера. Такая шихтовая добавка применяются в процессе выплавки специальных сплавов для изготовления отдельных деталей и спец проката.

Для создания сварных конструкций используют такие марки низкоуглеродистой стали:

  • Ст0;
  • Ст1сп;
  • Ст1пс;
  • Ст1кп;
  • Ст2сп;
  • Ст2пс;
  • Ст2кл;
  • Ст3сп;
  • СТ3кл (ГОСТ 380);
  • сталь 10;
  • сталь 15;
  • сталь 20 (ГОСТ 1050);
  • S235-S295;
  • P235-P295 (EN 10025, EN 10027-1, EN 10028-2).
Читать еще:  Как переделать трёхфазный двигатель в однофазный

Для сплавов выпускаемых на территории стран СНГ, а также согласно установленных правил ГОСТ маркировка сталей производится следующим образом:

  • буква стоящая перед названием марки указывает группу к которой относится сплав, (всего три группы А, Б, В, группа «А» не указывается при маркировке);
  • «Ст» или «сталь», указывает, что сплав является обыкновенным;
  • первая цифра в марке указывает номер по ГОСТ, число от 0 до 6;
  • степень раскисления указывается следующими сокращениями: «сп», «пс», «кп» (в случае сталей «А» группы обозначение «сп» не указывается и принимается таковым по умолчанию);
  • следующая цифра — № категории стали, согласно ГОСТ от 0 до 6. Первая категория не указывается в обозначении;
  • если в маркировке указано тире между первой и второй цифрой, это означает, что к стали не предъявлялись требования по степени раскисления.

Оставьте свой комментарий Отменить ответ

Легированная сталь — это сталь, включающая в себя разные легирующие…

Обзор углеродистых и низколегированных сталей

Некоторые стали этой группы мы уже рассматривали (У8, ШХ15), теперь кратко рассмотрим основные особенности и наиболее типичных представителей.

Итак, начнем с углеродистых сталей. Углерод – практически единственный легирующий элемент (некоторые могут содержаться как примеси), некоторые стали могут быть легированы незначительными количествами марганца, кремния или кобальта.

Инструментальные углеродистые стали в соответствии с ГОСТ 1435–90 маркируют буквой «У» и числом, указывающим среднее содержание углерода в десятых долях процента. Для изготовления инструмента применяют качественные стали марок У7–У13 и высококачественные стали марок У7А–У13А, химический состав которых приведен в табл. 1.

Таблица 1
Марки и химический состав инструментальных углеродистых сталей (ГОСТ 1435–90)

По механическим свойствам и назначению углеродистые стали подразделяются на:

• стали повышенной вязкости (У7–У9) для изготовления инструмента с высокой режущей способностью, подвергающегося ударным нагрузкам (зубила, кернеры и т. д.);
• стали высокой твердости (У10–У13) для изготовления режущего инструмента, не подвергающегося ударным нагрузкам (напильники, шаберы и т. д.).
• Стали У15С и У16 в основном применяются (точнее применялись) для износостойких втулок

К первой группе сталей вплотную примыкают и рессорно-пружинные стали типа 65Г и 70С2А

Термическая обработка углеродистых инструментальных сталей состоит из двух этапов: предварительная и окончательная (предполагается, что изделия прошли стандартную ПТО).

Предварительная термическая обработка применяется для уменьшения деформации (в 1,5–2 раза) деталей из углеродистых сталей при последующей закалке. Она заключается в предварительной закалке с 740–760 °С с охлаждением в масле (возможно, несколько раз) и последующем отпуске при 550-600 °С (1 ч). Окончательная термическая обработка состоит из закалки и низкого отпуска, режимы которых указаны в табл. 2.

Таблица 2
Режимы термической обработки углеродистых инструментальных сталей

Примечание. Закалочная среда — вода, отпуск проводится на воздухе. При закалке в масле Тз повышают на 10-20 °С (неоптимально для клинков, так как приводит к заметному росту зерна и снижению мех. характеристик. Рекомендуется закалка “через воду в масло”).

Как мы видим, углеродистые стали имеют очень узкий интервал закалочных температур, поэтому необходимо максимально точно “попадать” в режим, что требует большого опыта и ответственного подхода к процессу.

Время выдержки на 1 мм диаметра (толщины): 20–35с. при нагреве в соляной ванне и 50–80с. при нагреве в печи.

Углеродистые стали имеют высокую критическую скорость закалки — порядка 200–300 °С/с. Замедление охлаждения при закалке недопустимо, так как приводит к частичному распаду аустенита при температурах перлитного интервала и, как следствие, к появлению мягких пятен. Поэтому только инструменты малого диаметра могут после закалки в воде (водном растворе) прокаливаться насквозь.

Инструменты крупных размеров при закалке в воде и водных растворах солей, кислот и щелочей, охлаждающая способность которых выше, чем воды, закаливаются на мартенсит лишь в тонком поверхностном слое. Структура же глубинных зон инструментов представляет собой продукты распада аустенита перлитом в интервале температур. Сердцевина инструментов, имеющих такую структуру, является менее хрупкой по сравнению с мартенситной структурой. Поэтому инструменты, имеющие такую сердцевину, лучше переносят толчки и удары по сравнению с инструментами, закаленными насквозь на мартенсит. Для клинков может применяться зонная закалка, когда обух защищается специальными обмазками, снижающими скорость охлаждения. В этих случаях можно получить твердый мартенсит на лезвийной части и достаточно вязкий и пластичный сорбит/троостит на теле и обухе клинка. Линия, разделяющая эти две области в японской традиции называется Хамон.

Углеродистые инструментальные стали отпускают при температурах не более 200 °С во избежание снижения твердости (для клинков возможен “зонный отпуск”, когда тело и обух клинка нагревают до более высокой температуры (обычно 400-500С), сохраняя на лезвийной части структуру низкоотпущенного мартенсита). Твердость окончательно термически обработанного инструмента из углеродистых сталей обычно лежит в интервале 57–63 HRC, а прочность при изгибе составляет 1800–2700 МПа.

Низколегированные стали. В этих сталях небольшие количества легирующих элементов обычно лишь влияют на прокаливаемость, незначительно изменяя другие свойства. Традиционно эти стали подразделяются на стали неглубокой и глубокой прокаливаемости.

В отдельную группу можно выделить стали для ударных инструментов. Химический состав данных сталей по ГОСТ 5950–73 приведен в табл. 3.

Таблица 3
Марки и химический состав (масс. %) легированных инструментальных сталей (ГОСТ 5950–73)

Примечание. В обозначении марок первые цифры означают массовую долю углерода в десятых долях процента. Они могут не указываться, если массовая доля углерода близка к единице или больше единицы. Буквы означают:
Г — марганец,
Х — хром,
В — вольфрам,
С — кремний,
Ф — ванадий,
Н — никель,
М — молибден.
Цифры, стоящие после букв означают среднюю массовою долю соответствующего легирующего элемента в целых единицах. Отсутствие цифр означает, что массовая доля этого легирующего элемента равна 1 %. В отдельных случаях массовая доля легирующих элементов не указывается, если она не превышает 1,8 %.

Читать еще:  Производители дроби для дробеструйной обработки

Стали неглубокой прокаливаемости

Стали неглубокой прокаливаемости по устойчивости переохлажденного аустенита незначительно превосходят стали группы У7–У13, но благодаря легированию хромом (0,2–0,7 %), ванадием (0,15–0,30 %) и вольфрамом имеют большую устойчивость к перегреву, более высокие износо- и теплостойкость (в поверхностном слое).

Эти стали используются для изготовления инструментов, подвергаемых поверхностной (местной) закалке: пилы, зубила, штемпели, ножи для холодной и горячей резки, обрезные матрицы и пуансоны и т. п. Некоторые стали имеют специальное применение:
— сталь 13Х предназначена главным образом для бритвенных ножей и лезвий, хирургического и гравировального инструмента;
— сталь В2Ф предназначена для ленточных пил и ножовочных полотен для резки сталей средней твердости, по работоспособности превосходящая стали типа 9ХФ в 1,5–2 раза;
— сталь ХВ4Ф отличается особо высокой твердостью (HRC 67–69) и износостойкостью благодаря присутствию W6C, который не растворяется при температуре закалки. Эту сталь называют алмазной и из неё изготовляют резцы и фрезы для обработки с небольшими скоростями материалов с высокой поверхностной твердостью (отбеленных чугунов и закаленных деталей).

Стали глубокой прокаливаемости

Стали глубокой прокаливаемости имеют более высокое содержание хрома (0,6–1,7 %, иногда до 3%), а также совместное присутствие в ряде марок сталей хрома, марганца и кремния (вольфрама). Такое комплексное легирование при относительно небольших количествах каждого элемента существенно повышает прокаливаемость, повышает однородность распределения карбидов (кроме сталей типа ХВГ) и уменьшает чувствительность сталей к перегреву.

Из сталей 9ХС, ХГС, ХВГ, 9ХВГ и ХВГС изготовляют режущий (метчики, плашки, развертки, фрезы и т.д.), а также штамповый (пробойники, вырубные штампы и т. д.) инструмент более ответственного назначения, чем из углеродистых сталей.

Отличительная особенность марганецсодержащих сталей (9Г2Ф, ХВГ и др.) состоит в их малой деформируемости при закалке. Марганец, интенсивно снижая интервал мартенситного превращения, способствует сохранению остаточного аустенита (до 15–20 %), который компенсирует (частично или полностью) увеличение объема при образовании мартенсита. Это качество сталей позволяет изготавливать из них инструмент, к которому предъявляют жесткие требования к размерной стабильности при термообработке. Термическая обработка: закалка + низкий отпуск проводится в соответствии с режимами, указанными в табл. 4.

Стали для ударных инструментов

Исходя из назначения эти стали должны обладать: повышенной вязкостью для предупреждения поломок и выкрашивания режущих кромок инструмента, работающего в условиях больших ударных нагрузок; высокими прокаливаемостью и закаливаемостью. Необходимый комплекс свойств сталей этой группы обеспечивается соответствующим легированием. Химический состав представлен в табл. 5.

Хромокремнистые стали (4ХС, 6ХС) прокаливаются в образцах диаметром до 50–60 мм при охлаждении в масле. Кроме того, стали, легированные кремнием, имеют повышенные устойчивость при отпуске и предел текучести. Недостатком этих сталей является хрупкость первого рода после отпуска при 270–400 °С на твердость 46–50 HRC. Поэтому для получения удовлетворительной вязкости в этом случае необходимо применять изотермическую закалку.

Хромовольфрамокремнистые стали 5ХВ2СФ, 6ХВ2С и другие, как более сложнолегированные, прокаливаются в больших сечениях (до 70–80 мм) при охлаждении в масле и хорошо принимают изотермическую закалку. Стали с вольфрамом менее чувствительны к отпускной хрупкости первого рода. Легирование сталей вольфрамом также повышает устойчивость против разупрочнения при отпуске.

По структурному признаку стали, содержащие 0,4–0,5 % С, являются доэвтектоидными, а с 0,6 % С — эвтектоидными и заэвтектоидными. Структура доэвтектоидных сталей после отжига состоит из пластинчатого и, реже, зернистого перлита с небольшими участками феррита, заэвтектоидных — из зернистого перлита. Кроме того, в структуре последних наряду с цементитом присутствует карбид МС. После закалки структура характеризуется наличием мартенсита и остаточного аустенита, а при повышенном содержании углерода — еще и избыточных карбидов. Отпуск обеспечивает образование троститной структуры. Режимы термической обработки сталей указаны в табл. 5.

Таблица 4.
Режимы окончательной термической обработки и твердость низколегированных инструментальных сталей

Примечания: Для сталей ХВ4Ф (ХВ5) и В2Ф в качестве ПТО применяется длительный высокий отпуск после горячей деформации по спец. режиму. Отжиг и ТЦО могут привести к резкой потере прокаливаемости.

Таблица 5.
Режимы окончательной термической обработки сталей для ударных инструментов

К сталям последней группы примыкают рессорно-пружиннные стали типа 50ХФА, 60ХВС2А и т.д.

А теперь несколько советов по выбору стали и ее термической обработки

1. Для использования в составе многослойных/дамасских пакетов лучше выбирать относительно низколегированные стали с хромом не выше 1% (большие количества резко ухудшают свариваемость). Стали с марганцем при травлении как правило дают более темный фон, стали с хромом и никелем – более светлый. При выборе сталей в пакет необходимо учитывать необходимость совпадения интервала закалочных температур с учетом возможного обезуглероживания.

2. Для клинков в японской традиции надо выбирать стали с наименьшей прокаливаемостью – это позволит получить наиболее четкую линию “хамон”

3. Для изделий, подвергаемых ударным нагрузкам (длинномер, тесаки, топоры) лучше выбирать относительно низкоуглеродистые стали и использовать зонные закалку/отпуск

4. Зачастую гораздо более “простая” сталь типа ШХ15 может показать в изделии лучший комплекс свойств чем, например, очень требовательная к режимам горячей деформации и ТО “Алмазная” сталь типа ХВ4Ф.

5. Для покупателей: в случае “углеродистых” сталей на первое место выходит доверие к Мастеру, поскольку только это в некоторой степени является гарантией опыта, точного соблюдения технологии и, следовательно, высоких свойств конечного изделия.

* При подготовке материала использован справочник «Металлы и сплавы», СПб, 2003г.

Ссылка на основную публикацию