Устройство маслоотделителя для компрессора
Маслоотделитель для компрессора
Маслоотделители рекомендуются для систем:
- работающих при низких температурах;
- с не смешивающимися хладагентами;
- с испарителями, которые не возвращают масло — затопленные испарители;
- с линиями перепуска масла;
- с переменной производительностью;
- с длинным вертикальным всасывающим или нагнетательным трубопроводом.
Хотя должным образом установленные маслоотделители обычно очень хорошо отделяют масло от пара хладагента, они эффективны не на 100%. Следовательно, необходимо обеспечить некоторые дополнительные средства удаления небольшого количества масла, которое проходит через отделитель в другие части системы.
Устройство маслоотделителей нагнетательного трубопровода показаны на рисунке 24.1. В трубе большого диаметра установлены параллельные экраны и перфорированные перегородки. Пар хладагента со смазкой поступает из нагнетательного трубопровода меньшего диаметра в маслоотделитель, в результате чего скорость пара уменьшается. У капель масла больше кинетическая энергия и, следовательно, они продолжают двигаться к перегородке с большей скоростью. Так как тяжелые капли не могут быстро изменить направление и пройти через отделитель, они оседают на поверхности перегородок, а пар проходит через отверстия. Капли собираются и стекают в основание маслоотделителя, а затем обратно в компрессор через поплавковый регулятор и трубу. В других конструкциях маслоотделителей используется центробежная сила, сокращение скорости пара и изменение направления пара для отделения масла. Каждое устройство также основано на разнице кинетической энергии масла и пара.
При использовании маслоотделителя в системе важно ограничить попадание жидкого хладагента в картер при выключенном компрессоре. Хладагент может конденсироваться в маслоотделителе, если там холоднее, чем в компрессоре или соединительном трубопроводе. Уровень жидкости в отделителе поднимется и откроет поплавковый регулятор, пропуская смесь масла и жидкого хладагента в картер компрессора. Для минимальной конденсации пара хладагента при выключенном компрессоре в отделителе, его необходимо установить возле компрессора в теплом месте. Отделитель необходимо хорошо изолировать для уменьшения теплопередачи в окружающую среду при выключенном компрессоре. Для дальнейшего уменьшения возможности попадания жидкого хладагента из отделителя в картер линия отвода масла должна быть соединена с входным отверстием компрессора, а не картера. Благодаря устройству проходов в компрессоре жидкий хладагент испарится, а не смешается с маслом в картере.
Линию возврата масла необходимо оборудовать электромагнитным клапаном, смотровым стеклом, ручным регулирующим вентилем и ручным стопорным вентилем, как показано на рис. 23.15 в предыдущей главе. Определяя уровень масла через смотровое стекло, ручной регулирующий вентиль поворачивают так, чтобы жидкая смесь из маслоотделителя медленно поступала во входное отверстие при включенном компрессоре. Электромагнитный клапан соединен со стартером двигателя компрессора так, чтобы клапан был открыт, только когда компрессор работает. Это предотвращает перетечку жидкости из отделителя в выключенный компрессор, но разрешает регулировать поток и испарение хладагента во входное отверстие при включенном компрессоре.
Функции маслоотделителя
Основной функцией отделителя масла является удаление масла из потока паров хладагента высокого давления на линии нагнетания и его возврат в компрессор. Маслоотделитель предотвращает повышенный унос масла из картера компрессора и увеличивает эффективность системы посредством снижения интенсивности циркуляции масла в холодильном контуре.
Масло может возвращаться в компрессор напрямую (однокомпрессорные установки) или через систему «маслосборник — регулятор уровня масла» (многокомпрессорные агрегаты).
Отделители масла разных производителей и серий могут значительно отличаться друг от друга по внутренней конструкции и иметь различную эффективность маслоотделения. Кроме того, выпускаются маслоотделители как герметичные, так и разборные.
Стандартные отделители масла
Принцип действия. При входе в маслоотделитель пары хладагента с каплями масла попадают в корпус маслоотделителя, где скорость потока значительно падает. За счет снижения скорости потока значительная часть капель и паров масла оседает в нижней части аппарата. Затем газ проходит через выходной сетчатый фильтр, где происходит окончательное отделение масла от хладагента. В нижней части маслоотделителя находится поплавковый механизм с игольчатым клапаном, который возвращает масло обратно в компрессор.
Циклонные отделители масла
Принцип действия. При входе в маслоотделитель пары хладагента с каплями масла попадают в спиральную часть аппарата. Поток движется по спирали и за счет центробежной силы происходит осаждение капель масла на внутренней поверхности стенок маслоотделителя. По стенкам масло стекает в нижнюю часть аппарата, отделенную от основной части специальным маслоотбойником, который предотвращает повторный унос масла. В нижней части маслоотделителя находится поплавковый механизм с игольчатым клапаном, который возвращает масло обратно в компрессор.
Конструкция маслоотделителя и маслоотбойника предотвращает выброс масла при запуске холодильного компрессора.
Для отделения масла от хладагента применяют различные типы маслоотделителей, эффективность работы которых зависит от условий их использования. Например, степень отделения масла в аппаратах увеличивается с понижением температуры пара, входящего в маслоотделитель. Маслоотделители с фильтрующей насадкой обеспечивают большую степень отделения при меньшей доли масла во входящем в аппарат паре хладагента. Бар-ботажные маслоотделители работают с номинальным значением степени отделения, если высота барботажного слоя в аппарате не менее 0,12 м, а отделенное масло непрерывно удаляется из аппарата.
Эффективность работы гидроциклонов зависит от скорости движения потока хладагента с маслом во входном патрубке и его температуры, а также от гидравлического сопротивления аппарата. Степень отделения масла в аммиачном коническом гидроциклоне повышается с увеличением температуры и скорости движения потока во входном патрубке, достигая максимума при температуре 25°С и скорости движения 7-8 м/с, что связано с изменением плотности и вязкости хладагента и масла. Степень отделения масла в цилиндрическом гидроциклоне от R22 возрастает при понижении температуры и повышении скорости движения потока во входном патрубке. Рекомендуемые условия работы — скорость движения потока 9 м/с при температурах от −30 до +15°С.
Принцип работы маслоотделителя холодильной установки
Маслоотделитель холодильной установки
Масло может очень сильно влиять на работу холодильной установки, как улучшая работу системы качественной смазкой механизма компрессора, так и ухудшая работу за счет покрытия испарителя пленкой и создания дополнительного термического сопротивления, что ведет к повышению температуры испарения и повышению нагрузки на компрессор. Для предотвращения негативных эффектов служат специальные устройства, устанавливаемые на линии нагнетания, после выхода хладагента из компрессора которые называются линейные ресиверы или маслоотделители.
Требования к маслу для компрессоров достаточно жесткие, во-первых, оно не должно содержать ни каких кислот и щелочей, а также примесей и, конечно же, воды, а также не должно нарушать его химического состава и меньше влиять на его физические параметры. Тип и марка используемого масла выбирается в зависимости от параметров работы холодильной установки, так как температура кипения хладагента может быть и -80°C и масло должно выдерживать такие нагрузки. Некоторые фреоны, например R12, полностью растворяется в масле, образуя однородный раствор и нет необходимости разделения, но это влечет накопление масла в испарителе, особенно в затопленных иcпарителях, и его все равно необходимо возвращать, ведь скапливаясь там, его объем уменьшается в картере компрессора и вызывает ухудшение его смазки.
Фреоновые и аммиачные хладагенты и их взаимодействие с маслом
Растворимость жидких хладагентов в маслах увеличивается при повышении температуры, а взаимное расположение слоев зависит от плотности. В аммиачных компрессорах используются в основном минеральные масла, благодаря чему масло будет находиться ниже аммиака, в фреоновых, наоборот, слой масла будет находиться выше фреона.
Маслоотделители для фреоновых и аммиачных установок
Хладагент, нагнетаемый в систему компрессором, захватывает пары и частички масла, которые и необходимо отделить, маслоотделение обычно происходит механически, за счет снижения скорости движения смеси до 0,5 — 0,8 м/с и его направления. Маслоотделитель представляет собой емкость, подача и забор хладагента происходит в верхней зоне, но подача опущена вниз емкости, для изменения движения потока, крупные капли масла, сразу же выпадают из смеси, а мелкие проходят обратно вверх через серию специальных металлических решеток, препятствующих движения, благодаря чему на них и выпадает остальная часть масла. Оно стекает по стенкам вниз, в поплавковую камеру, и оттуда уже возвращается в холодильные компрессоры. К сожалению, такой метод улавливает всего 65% масла, так как даже при низких скоростях, капли настолько мелкие, что их все равно утягивает дальше. Для увеличения эффективности процесса отделения масла, смесь предварительно охлаждают водой.
В аммиачных холодильных установках хладагент (для более эффективного маслоотделения) пропускаются через небольшой слой жидкого аммиака, такой способ называют барботажным, пары смеси аммиака с маслом барботируют через жидкий слой, при этом масло более эффективно конденсируется, эффективно задерживаются даже маленькие капли. Компрессор постоянно подает в ресивер жидкий аммиак, благодаря чему поддерживается весь цикл. Таким образом, улавливание масла увеличивается до 87%. Аммиачные испарители более подвержены образованию масляной пленки, поэтому применение маслоотделителей зачастую является крайне необходимым решением.
В двухступенчатой установке применяется схема с промежуточным сосудом, что позволяет более эффективно отделять и собирать масло, а также равномерно его распределять между компрессорами.
Фреоновые холодильные установки менее подвержены образованию пленки в испарителе, но масло увеличивает вязкость фреона, благодаря чему возрастает сопротивление теплопередачи. В двухступенчатых системах, после каждой ступени компрессора устанавливается маслоотделитель, если компрессор находится ниже испарителя, то масло естественным образом возвращается обратно. Если же компрессор находится выше, то применяются гидравлические затворы, в которых масло накапливается, пока полностью не перекроет сечение, тогда за счет разряжения создаваемого компрессором масло начнет подниматься. Один затвор может поднять масло на высоту до 3 метров, если компрессор находится выше, то такие затворы необходимо устанавливать каждые 3 метра до необходимой высоты.
Наша компания занимается подбором оборудования для холодоснабжения, мы выполняем работы полностью «под ключ» начиная с этапа проектирования, продолжая монтажными работами и заканчивая запуском, настройкой и сдачей в эксплуатацию. Наши инженеры помогут подобрать, а менеджеры подскажут цены на емкостное оборудование, а также оборудование для шоковой заморозки , и другие услуги предоставляемые компанией.
Наши менеджеры также помогут рассчитать цены на емкостное оборудование и заказать его.
Холодильные маслоотделители
Маслоотделители применяются при производстве холодильного оборудования. Их устанавливают на нагнетательном трубопроводе между компрессором и конденсатором холодильной установки с холодильным агрегатом, ограниченно растворяющимся в масле (например, аммиак и до некоторой степени фреоны). Они служат для отделения масла, увлекаемого парами холодильного агента из компрессора, не допуская попадания его в больших количествах в теплообменпые аппараты — конденсатор и испаритель.
Масло уносится из компрессора как в виде мелких капель, так и в парообразном состоянии, так как при температурах 80-130°С происходит частичное испарение масла — от 3 до 30%. Отделяется масло в маслоотделителях в результате резкого изменения направления и уменьшения скорости движения пара (до 0,7-1 м/с).
Направление движения пара изменяют, устанавливая в аппаратах перегородки (рис. 97,а) или определенным образом располагая патрубки. В этом случае маслоотделители улавливают только 40-60% масла, унесенного парами из компрессора, так как пары масла и его очень мелкие капли такой аппарат не улавливает.
Лучшие результаты дает центробежный, или циклонный, маслоотделитель (рис. 97,6). Здесь пар, поступающий по патрубку 1, попадая на направляющие лопатки 4, приобретает вращательное движение. Под действием центробежной силы капли масла отбрасываются на корпус и образуют медленно стекающую вниз пленку. Пар при выходе со спирали резко меняет направление и по патрубку 2 уходит из маслоотделителя. Отделившееся масло защищается от струи пара перегородкой 5, чтобы уровень его оставался в спокойном состоянии.
Для более полного отделения масла в современных конструкциях маслоотделителей применяют также водяное охлаждение (рис. 97, в) или пары, выходящие из компрессорного агрегата, промывают в жидком аммиаке (рис. 97,г). При этом парообразное масло конденсируется и вязкость его увеличивается, что способствует образованию более крупных капель масла, которые легко отделяются от пара холодильного агента.
Рис. 97. Маслоотделители:
а -с перегородкой; б — циклонный; в -с водяным охлаждением; г — с промызкой паров в жидком аммиаке: 1-патрубок для входа пара; 2-патрубок для выхода пара в конденсатор; 3 — перегородка; 4 — направляющие лопатки; 5-перегородка, защищающая от струи пара; 6 — насадка; 7 — водяной змеевик; 8 — уровнедержатель; 9 — переливная труба; 10-ресивер; 11 — конденсатор.
В маслоотделителе с водяным охлаждением (см. рис. 97, в) охлаждающая вода циркулирует по змеевику 7. Пар холодильного агента с маслом подается через патрубок /ив маслоотделителе многократно изменяет направление движения благодаря соответствующему расположению патрубков и насадки 6 из отбойных колец (или металлической стружки). Пар выходит через патрубок 2. Масло выпускают через поплавковый перепускной клапан в картер компрессора.
На рис. 97, г показан маслоотделитель с промывкой паров в жидком аммиаке и схема включения его. Пар вместе с маслом поступает из компрессора через патрубок 1, опущенный в аппарат под уровень жидкого аммиака, подведенного от конденсатора (или ресивера). При выходе из патрубка 1 пар барботирует через слой жидкости и охлаждается, что способствует лучшему отделению масла. Поднимаясь по аппарату, пар встречает отбойные тарелки с отверстиями и выходит через патрубок 2 в конденсатор 11. Плотность масла больше, чем жидкого аммиака, поэтому оно скапливается в нижней части аппарата под жидким аммиаком и периодически выпускается. Вследствие гидравлического сопротивления парового трубопровода давление в конденсаторе и ресивере несколько ниже, чем в маслоотделителе. Поэтому для создания постоянного уровня жидкости в маслоотделителе его необходимо устанавливать так, чтобы уровень жидкости в конденсаторе (или ресивере) был на 1,5 м выше уровня жидкости в маслоотделителе. Питание жидким холодильным агентом рекомендуется производить через поплавковый регулятор уровня, например ПР-14, или посредством уровнедержателя, как это показано на рис. 97, г. В этом случае жидкий холодильный агент стекает из конденсатора 11 в ресивер 10 через переливную трубу ‘9 уровнедержателя 8. Уровнедержатель соединен с маслоотделителем уравнительными трубками, поэтому в последнем поддерживается постоянный уровень жидкости, соответственно уровню жидкости в уровнедержателе.В маслоотделителях с водяным охлаждением или с промывкой пара отделяется 95-97% масла, унесенного парами из компрессора.
В холодильных установках, работающих на фреонах в плюсовом и среднетемпературном режимах, маслоотде-» лители не устанавливаются, так как масло, хорошо растворяясь во фреонах, циркулирует вместе с ним. В низкотемпературных установках, работающих на фреоне-22 и фреоне-12, за компрессорами устанавливают охлаждаемые водой маслоотделители с медными ребристыми змеевиками.
Влагоотделитель для компрессора своими руками
Задача влагоотделителя как важного устройства, помогающего в работе автомобильным малярам — выполнять роль осушителя для чрезмерно влажного воздуха, проходящего через краскопульт или компрессор. Зачем это нужно делать? Без масловлагоотделителя наносимая на элементы кузова машины краска быстро начнёт осыпаться, а сам кузов ржаветь. Использование этого аппарата — гарантия того, что лакокрасочное покрытие (ЛКП) вашего автомобиля прослужит достаточно долго.
Заводской или самодельный влагомаслоотделитель?
Если вы не занимаетесь профессионально покраской машин, вряд ли испытываете необходимость приобретать влагоотделитель, разработанный и собранный каким-либо крупным производителем. Мощность аппарата и количество краски, которое он способен пропускать через себя в промышленных масштабах, очень сильно влияют на цену, которую готов платить далеко не каждый автовладелец.
Что же тогда делать, если срочно нужно покрасить, например, крыло автомобиля или перекрасить его полностью, а денежных средств для того, чтобы обратиться в автомалярную мастерскую, сейчас нет? Можно попробовать сделать влагоотделитель своими руками, как предложено в видео.
Ниже мы расскажем, как собрать эффективный, работающий, надёжный влагоотделитель.
Есть три способа, с помощью которых избыточная влага убирается из воздуха, попадающего в покрасочный компрессор:
- специальные фильтры;
- применение центробежной силы;
- воздействие низких температур.
Разновидности влагоотделителей, создаваемых своими руками
В связи со способами, указанными выше, которые применяются для удаления лишней влажности из пропускаемого через влагомаслоотделитель воздуха, квалифицированные маляры различают такие виды этих устройств:
- с холодильным способом отделения влаги;
- с силикагелем, поглощающим избыточную влажность;
- с циклонным способом.
Ни один из описанных видов влагоотделителей не имеет неоспоримых преимуществ перед другими. У каждого есть определённые недостатки. Чтобы сделать правильный выбор, перед началом изготовления масловлагоотделителя своими руками следует внимательно рассмотреть и проанализировать схемы типов аппаратов и чётко знать свои цели, для выполнения которых нужен этот прибор.
Перед тем как начать собирать устройство, вам понадобится небольшой комплект инструментов, которые значительно облегчат вам процесс работы:
Самодельный аппарат с циклонным способом очистки
Принцип, по которому действуют такие влагоотделители: как только воздух попадает в камеру устройства, под действием центробежной силы он начинает стремительно вращаться. Тяжёлые частицы (масло, конденсат или песок), находящиеся в этот момент в воздухе, подвергаются влиянию центробежной силы, и их отбрасывает на стенки камеры. В это же самое время воздух, очищенный от примесей и избыточной влаги, проходит через отверстие, расположенное в нижней части камеры, и направляется в компрессор.
Чтобы изготовить такое устройство, нужно найти:
- газовый баллон, который использовался ранее для хранения пропана;
- сварочный аппарат;
- штуцер;
- 2 трубки из металла небольшого размера и длины.
Порядок проведения работ
Выполнять работы нужно в такой последовательности:
- баллон нужно установить краном вниз;
- один из штуцеров с помощью сварки прикрепляется к верху баллона, через него будет подаваться воздух на вход;
- отмеряем 2/3 высоты корпуса баллона и сварочным аппаратом крепим второй штуцер, который будет работать на выход;
- если вы хотите добиться от влагоотделителя, сделанного своими руками, лучшей эффективности, разрежьте корпус баллона пополам, насыпьте внутрь деревянные опилки или стружку, а в нижней части устройства поставьте сетку, которая будет выполнять роль фильтра. После этого аккуратно приварите друг к другу две половинки будущего аппарата и проверьте его на герметичность.
Теперь циклонный масловлагоотделитель готов к использованию.
Самодельный влагоотделитель с очисткой силикагелем
Для изготовления такого типа осушителя вам понадобится использованный водяной фильтр, а лучше масляный, и силикагель. Главная трудность при создании своими руками этого аппарата состоит в том, чтобы правильно разместить слой силикагеля.
Порядок работы:
- разберите на составные части использованный фильтр для автомобильного масла;
- рроверьте состояние патрубка, через который ранее подавалось масло в фильтр. Если он находится в удовлетворительном состоянии, его вполне можно сделать местом входа воздуха в камеру влагоотделителя;
- осмотрите фильтр на предмет дополнительных отверстий, которые могут нарушить герметичность изделия, и уберите их силиконовым герметиком или болтами с прокладками;
- повторите действия пункта 1 в обратном порядке;
- засыпьте силикагель в свободные места, чтобы полностью заполнить их;
- закрепите верхнюю крышку фильтра с помощью болта;
- если вам это необходимо, приварите кронштейны для крепления вашего влагоотделителя в удобном для вас месте.
Самодельное устройство с холодильным способом очистки
Принцип действия такого влагоотделителя основан на знании того, что влага обладает способностью конденсироваться из-за воздействия низкой температуры. Благодаря качественному удалению избыточной влажности воздуха, подаваемого в компрессор, такие аппараты очень популярны в среде профессиональных автомаляров. Подобный влагомаслоотделитель вы можете сделать своими руками: достаточно всего лишь пропускать воздушную смесь через холодильное оборудование или морозильную камеру.
Сложности при изготовлении агрегата такого типа таковы:
- нужно решить, как будет выводиться конденсат из влагоотделителя. Для этого к камере морозильника можно приварить специальный штуцер;
- необходимо позаботиться о полной герметизации вашего устройства.
Важные рекомендации, которые помогут сделать самодельный влагоотделитель для компрессора
На основе написанного выше вы можете предположить, что сделать надёжный масловлагоотделитель своими руками, — несложное дело, которое не займёт много времени и усилий. Это так. В то же время следует очень постараться, чтобы устройство получилось качественным и выполняло возложенные на него функции, иначе ЛКП вашей машины долго не проживёт. Для этого нужно придерживаться следующих рекомендаций:
- проверьте ваш агрегат на соответствие техническим характеристикам компрессора. Может получиться так, что ваш самодельный аппарат не сможет выдержать мощности краскопульта;
- используйте качественные материалы для сварки;
- проверьте штуцеры и патрубки на предмет беспроблемного прохождения через них воздушной смеси;
- применяйте качественные герметики и проведите тест на герметичность вашего изделия.