rahada.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда 2 звезды 3 звезды 4 звезды 5 звезд
Загрузка...

Сплав вт1 0 свойства

Титан

Титан широко распространен в земной коре, где его содержится около 6 %, а по распространенности он занимает четвертое место после алю-миния, железа и магния. Однако промышленный способ его извлечения был разработан лишь в 40-х годах ХХ века. Благодаря прогрессу в области самолето- и ракетостроения производство титана и его сплавов интенсивно развивалось. Это объясняется сочетанием таких ценных свойств титана, как малая плотность, высокая удельная прочность (s в/r × g), коррозионная стойкость, технологичность при обработке давлением и свариваемость, хладостойкость, немагнитность и ряд других ценных физико-механических характеристик.

Основные сведения о титане

Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Титан и титановые сплавы сочетают легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

История открытия титана

Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

Свойства титана

В периодической системе элементов Д. И. Менделеева титан расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.

Известны две аллотропические модификации титана (две разновидности титана, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.

По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но титан может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.

Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости титана — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.

Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.

Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Титан составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.

Характеристики физико-механических свойств титана (ВТ1-00)

Титан имеет две полиморфные модификации: a -титана с гексагональной плотноупакованной решеткой с периодами а = 0,296 нм, с = 0,472 нм и высокотемпературную модификацию b -титана с кубической объемно-центрированной решеткой с периодом а = 0,332 нм при 900 ° С. Температура полиморфного a « b -превращения составляет 882 ° С.

Механические свойства титана существенно зависят от содержания примесей в металле. Различают примеси внедрения — кислород, азот, углерод, водород и примеси замещения, к которым относятся железо и кремний. Хотя примеси повышают прочность, но одновременно резко снижают пластичность, причем наиболее сильное отрицательное действие оказывают примеси внедрения, особенно газы. При введении всего лишь 0,003 % Н, 0,02 % N или 0,7 % О титан полностью теряет способность к пластическому деформированию и хрупко разрушается.

Особенно вреден водород, вызывающий водородную хрупкость титановых сплавов. Водород попадает в металл при плавке и последующей обработке, в частности при травлении полуфабрикатов. Водород малорастворим в a -титане и образует пластинчатые частицы гидрида, снижающего ударную вязкость и особенно отрицательно проявляющегося в испытаниях на замедленное разрушение.

Читать еще:  Анемометр что это такое

Поэтому содержание примесей, особенно газов, в титане и титановых сплавах (табл. 17.1, 17.2) строго ограничено.

Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод). Полученный этим методом титан губчатый (ГОСТ 17746–79) в зависимости от химического состава и механических свойств выпускают следующих марок:
ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-ТВ (см. табл. 17.1). Цифры означают твердость по Бринеллю НВ, ТВ — твердый.

Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.

Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности. Например, технически чистый титан марки ВТ1-0 имеет: s в = 375–540 МПа, s 0,2 = 295–410 МПа, d ³ 20 %, и по этим характеристикам не уступает ряду углеродистых и Cr—Ni коррозионностойких сталей.

Высокая пластичность титана по сравнению с другими металлами, имеющими ГПУ- решетку (Zn, Mg, Cd), объясняется большим количеством систем скольжения и двойникования благодаря малому сотношению с/а = 1,587. По-видимому, с этим связана высокая хладостойкость титана и его сплавов (подробнее см. гл. 13).

При повышении температуры до 250 ° С прочность титана снижается почти в 2 раза. Однако жаропрочные Ti-сплавы по удельной прочности в интервале температур 300–600 ° С не имеют себе равных; при температурах выше 600 ° С сплавы титана уступают сплавам на основе железа и никеля.

Титан имеет низкий модуль нормальной упругости (Е = 110,25 ГПа) — почти в 2 раза меньше, чем у железа и никеля, что затрудняет изготовление жестких конструкций.

Титан относится к числу химически активных металлов, однако он обладает высокой коррозионной стойкостью, так как на его поверхности образуется стойкая пассивная пленка TiO2, прочно связанная с основным металлом и исключающая его непосредственный контакт с коррозионной средой. Толщина этой пленки обычно достигает 5–6 нм.

Благодаря оксидной пленке, титан и его сплавы не корродируют в атмосфере, в пресной и морской воде, устойчивы против кавитационной коррозии и коррозии под напряжением, а также в кислотах органического происхождения.

Производство изделий из титана и его сплавов имеет ряд технологических особенностей. Из-за высокой химической активности расплавленного титана его плавку, разливку и дуговую сварку производят в вакууме или в атмосфере инертных газов.

При технологических и эксплуатационных нагревах, особенно выше 550–600 ° С, необходимо принимать меры для защиты титана от окисления и газонасыщения (альфированный слой) (см. гл. 3).

Титан хорошо обрабатывается давлением в горячем состоянии и удовлетворительно в холодном. Он легко прокатывается, куется, штампуется. Титан и его сплавы хорошо свариваются контактной и аргонодуговой сваркой, обеспечивая высокую прочность и пластичность сварного соединения. Недостатком титана является плохая обрабатываемость резанием из-за склонности к налипанию, низкой теплопроводности и плохих антифрикционных свойств.

Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и др. элементами. Легирующие элементы оказывают большое влияние на полиморфные превращения титана.

Марки, химический состав (%) и твердость титана губчатого (ГОСТ 17746–79)

Маркировка титана и его сплавов

Маркировка титана в российской трактовке в большинстве случаев представляет собой букву «Т», указывающую на основной элемент и буквенные символы, идентифицирующие производителя. Исторически сложилась система маркировки титановых сплавов, отражающая наименование организации-разработчика и порядковый номер разработки сплава.

Титановые сплавы выпускаются 14 марок

Марка ВТ означает «ВИАМ титан», затем следует порядковый номер сплава.

Марка ОТ означает «Опытный титан» — сплавы, разработанные совместно ВИАМом и заводом ВСМПО (г. Верхняя Салда, Свердловской области).

Марка ПТ означает «Прометей титан» — разработчик ЦНИИ КМ («Прометей», г. Санкт-Петербург.)

Если после порядкового номера сплава стоит буква С или через тире ноль или единица, то это указывает, что сплав модернизирован, изменен по химическому составу.

Иногда в марку сплава добавляют буквы

«У» — улучшенный,

«М» — модифицированный,

«И» — специального назначения.

«Л» означает литейный сплав,

«В» — сплав, где марганец заменен эквивалентным количеством ванадия.

Технический титан может маркироваться одной буквой «Т» с последующим указанием чистоты сплава в цифрах, причём меньше по величине число указывает на более очищенный сплав. Например, один из самых качественных титанов считается титан ВТ1-00, количество примесей в котором не превышает 0,1%, а чистого титана содержится 99,9%.

К сожалению, в иных случаях цифры в маркировке титановых сплавов не отражают количественных пропорций легирующих элементов или чистоты состава, как это принято в большинстве случаев идентификации сложнолегированных цветных металлов. Поэтому существуют специальные таблицы, указывающие на содержание того или иного элемента в титановом сплаве определённой маркировки.

Читать еще:  Как определить зернистость точильного бруска

Среди наиболее популярных титановых сплавов, стоит отметить следующие металлы с соответствующей маркировкой:

  • ВТ5 и ВТ5-1 – свариваемый сплав с содержанием алюминия 4%-6%;
  • ОТ4, ОТ4-0 и ОТ4-1 – алюминиево-магниевый титановый сплав, отличающийся отличной свариваемостью;
  • ВТ18, ВТ20 – жаростойкие сплавы с повышенным содержанием алюминия до 8%;
  • ВТ22 – безалюминиевый титановый сплав, легированный ванадием (около5%) и молибденом (около 5%);
  • ВТ8, ВТ9 – термостойкие алюминиевые титановые сплавы с содержанием алюминия в промежутке от 4,5% до 7%;
  • ВТ6, ВТ6С – алюминиевые сплавы с включением ванадия (3,5%-6%);
  • ВТ15 – один из самых прогрессивных титановых сплавов, в состав которого входит хром (около10%), молибден (7%-8%) и алюминий (около3,5%).

две марки чистого титана ВТ1-00 и ВТ1-0, которые различаются суммой примесей: 0,58% и 0,84% соответственно. Прочность чистого титана колеблется в пределах 300-380 МПа при высокой пластичности (d»20¸30%).

8 марок литейных титановых сплавов: ВТ1Л, ВТ5Л, ВТ6Л, ВТ14Л, ВТ20Л, ВТ3-1Л, ВТ9Л, ВТ21Л.

Предпочтительные марки титана в стоматологии

Многочисленные фундаментальные и прикладные исследования заявляют, что лучшим материалом для изготовления дентальных имплантатов является титан.

В России для производства различных конструкций используется технически чистый титан марок BT 1-0 и BT 1-00 (ГОСТ 19807−91), а за рубежом применяют так называемый «коммерчески чистый» титан, который делят на 4 марки (Grade 1−4 ASTM, ISO). Также применяется титановый сплав Ti-6Al−4V (ASTM, ISO), являющийся аналогом отечественного сплава BT-6. Все эти вещества различны по химическому составу и механическим свойствам.

Титан марки Grade 1,2,3 – не используется в стоматологии, т.к. слишком мягкий.

Преимущества чистого титана марки Grade 4 (СP4)

  • Лучшая биологическая совместимость
  • Отсутствие в составе токсичного ванадия (V)
  • Лучшая стойкость к коррозии
  • 100% отсутствие аллергических рекаций

По данным исследования научных статей, методических и презентационных публикаций зарубежных компаний, стандартов ASTM, ISO, ГОСТ имеются сравнительные таблицы свойств и состава титана разных марок.

Таблица 1. Химический состав титана по ISO 5832/II и ASTM F 67−89.

** — Данные ISO и ASTM совпадают во многих пунктах, при их расхождении показатели ASTM приведены в скобках.

Таблица 2. Механические свойства титана по ISO 5832/II и ASTM F 67−89.

Таблица 3. Химический состав титановых сплавов по ГОСТ 19807−91.

* В титане марки ВТ 1−00 допускается массовая доля алюминия не более 0,3%, в титане марки ВТ 1−0 — не более 0,7%.

Таблица 4. Механические свойства титановых сплавов по ГОСТ 19807−91.

** Данные приведены по ОСТ 1 90 173−75.
*** В доступной литературе данных не обнаружено.

Самым прочным из рассмотренных материалов является сплав Ti-6Al−4V (отечественный аналог ВТ-6). Увеличение прочности достигается за счет введения в его состав алюминия и ванадия. Однако, данный сплав относится к биоматериалам первого поколения и, несмотря на отсутствие каких-либо клинических противопоказаний, он используется все реже. Это положение приведено в аспекте проблем эндопротезирования крупных суставов.

С точки зрения лучшей биологической совместимости, более перспективными представляются вещества, относящиеся к группе «чистого» титана. Необходимо отметить, что когда говорят о «чистом» титане, имеют в виду одну из четырех марок титана, допущенных для введения в ткани организма в соответствии с международными стандартами. Как видно из приведенных выше данных, они различны по химическому составу, который, собственно, и определяет биологическую совместимость и механические свойства.

Важен также вопрос о прочности этих материалов. Лучшими характеристиками в этом отношении обладает титан класса 4.
При рассмотрении его химического состава можно отметить, что в титане этой марки увеличено содержание кислорода и железа. Принципиальным является вопрос: ухудшает ли это биологическую совместимость?

Увеличение кислорода, вероятно, не будет являться отрицательным. Увеличение содержания железа на 0,3% в титане Grade 4 (по сравнению с Grade 1) может вызвать некоторые опасения, так как, по экспериментальным данным, железно (так же как и алюминий) при имплантации в ткани организма приводит к образованию вокруг имплантата соединительно-тканной прослойки, что является признаком недостаточной биоинертности металла. Кроме того, по тем же данным, железо подавляет рост органической культуры. Однако, как говорилось, приведенные выше данные касаются имплантации «чистых» металлов.

В данном случае важным является вопрос: возможен ли выход ионов железа через слой окиси титана в окружающие ткани, и если возможен, то с какой скоростью и каков из дальнейший метаболизм? В доступной литературе мы не встретили информации по этому поводу.

Читать еще:  Устройство горелки на отработанном масле

При сопоставлении зарубежных и отечественных стандартов можно отметить, что разрешенные для клинического применения в нашей стране титановые сплавы ВТ 1−0 и ВТ 1−00 практически соответствуют маркам «чистого» титана Grade 1 и 2. Пониженное содержание кислорода и железа в этих марках приводит к снижению их прочностных свойств, что не может считаться благоприятным. Хотя у титана марки ВТ 1−00 верхняя граница предела прочности на растяжение соответствует аналогичному показателю Grade 4, предел текучести при этом у отечественного сплава почти в два раза ниже. Кроме того, в его состав может входить алюминий, что, как указывалось выше, нежелательно.

При сопоставлении зарубежных стандартов можно отметить, что американский стандарт является более строгим, и стандарты ISO ссылаются на американские в ряде пунктов. Кроме того, делегация США выразила несогласие при утверждении стандарта ISO в отношении титана, используемого в хирургии.

Таким образом, можно утверждать, что:
Лучшим материалом для изготовления дентальных имплантатов, на сегодняшний день, является «чистый» титан класса 4 по стандарту ASTM, так как он:

  • не содержит токсичного ванадия, как, например, сплав Ti-6Al−4V;
  • наличие в его составе Fe (измеряемого в десятых долях %) не может считаться отрицательным, так как даже в случае возможного выхода ионов железа в окружающие ткани воздействие их на ткани не является токсичным, как у ванадия;
  • титан класса 4 обладает лучшими прочностными свойствами по сравнению с другими материалами группы «чистого» титана;

Сплав вт1 0 свойства

* Титан — основа.
** Олово 2,0 — 3,0 %.

Примечания:
1. В плоском прокате из сплава ВТ14 толщиной до 10 мм содержание алюминия должно быть 3,5 — 4,5 %, а в остальных видах полуфабрикатов — 4,5 — 6,3 %.

2. В сплаве ВТЗ-1, применяемом дпя штамповок лопаток и лопаточной заготовки, содержание алюминия должно быть не более 6,8 %.

ПРУТКИ КАТАНЫЕ ИЗ ТИТАНОВЫХ СПЛАВОВ (по ГОСТ 26492-85 в ред. 1991 г.)

Прутки поставляют в горячекатаном состоянии без термической обработки. Допускается изготовление прутков волочением.
Механические свойства прутков при нормальной температуре обычного качества, определяемые на образцах, вырезанных в долевом направлении волокна, приведены в табл. 120.
Механические свойства прутков при повышенной температуре, определяемые на отожженных образцах, вырезанных в долевом направлении волокна, указаны в табл. 122.
Указанные в табл. 120 пределы диаметров брать из ряда: 10; 12; 14; 16; 18; 20; 22; 25; 28; 30; 32; 35; 40; 42; 45; 48; 50; 52; 55; 60; 65; 70; 75; 80; 85; 90; 100; 110; 120; 130; 140; 150 мм.
По длине прутки поставляют:
а) немерной длины от 0,5 до 4 м для диаметров от 10 до 18 мм и длиной от 1 до 6 м для диаметров от 0,5 до 60 мм;
б) мерной и кратной длины в пределах немерной.
Допускается поставка прутков диаметром от 10 до 30 мм связанными в прутки. В этом случае конец каждого прутка окрашивают в цвет, приведенный в табл. 121.

120. Механические свойства прутков при нормальной температуре

121. Марки сплава и цвета маркировки прутков

122. Механические свойства прутков при повышенной температуре

ЛИСТЫ ИЗ ТИТАНА И ТИТАНОВЫХ СПЛАВОВ (по ГОСТ 22178-76 в ред. 1990 г.)

Листы изготовляют из титана марок ВТ1-00, ВТ1-0 и титановых сплавов марок ОТ4-0, ОТ4-1, ОТ4, ВТ5-1, ВТ6.

Листы подразделяют:
а) по качеству отделки поверхности:
высокой отделки — В, повышенной отделки — П, обычной отделки — без дополнительного обозначения;
б) по отклонению от плоскостности:
улучшенной плоскостности — У, нормальной плоскостности — без дополнительного обозначения.

Листы из титана и титановых сплавов марок ВТ1-00, ВТ1-0, ОТ4-0, ОТ4-1 и ОТ4 толщиной до 1,8 мм поставляются мерной длины с интервалом 50 мм в пределах длин, предусмотренных табл. 123.
Листы из титана и титановых сплавов марок ВТ1-00, ВТ1-0, ОТ4-0, ОТ4-1 и ОТ4 толщиной от 2,0 до 10,5 мм поставляются мерной длины с интервалом 100 мм в пределах длин, предусмотренных табл. 123.

В табл. 124 теоретическая масса 1 м 2 листа из титана марок ВТ1-0 и ВТ1-00 вычислена по номинальной толщине листа при плотности 4,5 г/см 3 . Для вычисления приближенной теоретической массы листов из титана и титановых сплавов других марок следует пользоваться следующими переводными коэффициентами: 1,011 — для сплавов марок ОТ4 и ОТ4-1; 1,004 — для сплава марки ВТ14; 1,002 — для ОТ4-0; 0,989 — для ВТ6 и ВТ20; 0,983 — для ВТ5-1.

123. Размеры листов в зависимости от марки титана или титанового сплава, мм

Ссылка на основную публикацию