Расчет полной мощности трансформатора
Расчет полной мощности трансформатора
Хочу привести реальный пример выбора мощности силового трансформатора в одном из недавно выпущенных мною проектов. Проект проходил экспертизу и получил замечание по выбору силового трансформатора, вернее нужно было обосновать мощность силового трансформатора.
По техническим условиям было разрешено 180 кВт по третьей категории электроснабжения. На данном этапе я делал лишь одну позицию (склад) с потребляемой мощностью 20 кВт, остальные позиции будут запроектированы позже.
Естественно выбор силового трансформатора я делал исходя из мощности 180 кВт.
Вы, наверное, помните, что у меня же есть статья:
В этой статье я привел ссылки некоторых нормативных документов, поэтому повторяться не буду. Там же я привел и методические указания по выбору силового трансформатора.
На эту тему имеется еще одна статья:
Так что обязательно ознакомьтесь, о чем я писал ранее.
В общем, суть такая, что если выбирать трансформатор по методическим указанием, то нам достаточно мощности силового трансформатора 160 кВА. Именно на это и ссылался эксперт. В проекте выбрана трансформаторная подстанция 250 кВА в металлическом корпусе. Самый дешевый вариант.
Я в свою очередь привел ссылку из ТКП 45-4.04-297-2014 п.11.20. Там сказано, что коэффициент загрузки однотрансформаторной подстанции должен быть 0,9-0,95. Там же написано, что выбор трансформатора должен производиться на основании технических характеристик трансформаторов от заводов-изготовителей.
Рассчитаем коэффициент загрузки трансформатора.
Кз=Sр/Sтр
Sр – полная расчетная мощность, кВА;
Sтр – мощность силового трансформатора, кВА.
Коэффициент мощности я принял 0,8.
А теперь представим, лето, температура воздуха 30 градусов. Как вы думаете, металлическая оболочка будет сильно греться на солнце? В таких условия воздух вокруг трансформатора, на мой взгляд, будет тоже не менее 30 градусов, а скорее всего и больше, т.к. КТП будет под прямыми солнечными лучами. Утверждать не буду, это лишь мои догадки.
Следующая таблица показывает нормы максимально допустимых систематических нагрузок при температуре 30 градусов.
Нормы максимально допустимых систематических нагрузок
Проверим трансформатор 160 кВА. Sр=225 кВА – это не значит, что трансформатор постоянно будет загружен на такую мощность. На такую мощность он будет загружен лишь пару часов в день. В остальное время он будет загружен, скажем на 65 % от этой расчетной мощности.
Тогда К1=146,25/160=0,91, примем значение К1=0,9 – начальная загрузка трансформатора.
Согласно приведенной таблице и при температуре окружающей среды 30 градусов, К1=0,9 трансформатор 160 кВА в нормальном режиме с Sр=225 кВА (Кз=К2=1,4) сможет работать около…0 часов. В таких условиях максимальный коэффициент загрузки трансформатора 1,27 в течение 0,5 часа.
Конечно, следует еще привести таблицу норм допустимых аварийных перегрузок.
Нормы допустимых аварийных перегрузок
По этой таблице наш трансформатор сможет работать чуть больше 2 часов.
Не смотря на то, что трансформатор способен выдерживать аварийные перегрузки, следует иметь ввиду, что в таких режимах трансформатор очень сильно изнашивается и срок эксплуатации его сокращается.
Разумеется, по графику нагрузки значительно проще выбрать мощность силового трансформатора. В наших условиях проектирования, я считаю всегда должен быть небольшой запас прочности оборудования (резерв мощности), поскольку энергосистема развивается, количество потребляемой электроэнергии увеличивается и все чаше в ТУ пишут одним из требований: проверка существующих трансформаторов, т.е. многие подстанции загружены до предела, а для небольших предприятий это может оказаться проблемой.
Вывод: трансформатор 160 кВА не сможет нормально работать при наших условиях эксплуатации, поэтому в проекте выбран трансформатор 250 кВА.
Кстати, энергонадзор согласовал КТП без проблем.
Вы согласны со мной либо нужно тупо руководствоваться методическими указаниями?
Как узнать мощность трансформатора?
Определение мощности силового трансформатора
Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором.
Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.
Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.
Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.
Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.
Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной.
Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (Iн на напряжение питания прибора (Uн ). Думаю, многие знакомы с этой формулой ещё по школе.
,где Uн – напряжение в вольтах; Iн – ток в амперах; P – мощность в ваттах.
Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.
Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».
Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.
При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.
Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.
Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения.
Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см 2 . Далее нам понадобиться следующая формула.
,где S – площадь сечения магнитопровода; Pтр – мощность трансформатора; 1,3 – усреднённый коэффициент.
После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.
Подставим в формулу значение сечения S = 3,4 см 2 , которое мы получили ранее.
В результате расчётов получаем ориентировочное значение мощности трансформатора
7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.
Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов – «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).
Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.
Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.
Проектирование трансформатора – как рассчитать мощность трансформатора
Зная, как рассчитать мощность трансформатора, можно самостоятельно выбрать и приобрести качественный прибор, позволяющий преобразовывать напряжение в большие или меньшие значения.
Как рассчитать мощность трансформатора
Особенность работы стандартного трансформатора представлена процессом преобразования электроэнергии переменного тока в показатели переменного магнитного поля и наоборот. Самостоятельный расчет трансформаторной мощности может быть выполнен в соответствии с сечением сердечника и в зависимости от уровня нагрузки.
Расчет обмотки преобразователя напряжения и его мощности
По сечению сердечника
Электромагнитный аппарат имеет сердечник с парой проводов или несколькими обмотками. Такая составляющая часть прибора, отвечает за активное индукционное повышение уровня магнитного поля. Кроме всего прочего, устройство способствует эффективной передаче энергии с первичной обмотки на вторичную, посредством магнитного поля, которое концентрируется во внутренней части сердечника.
Параметрами сердечника определяются показатели габаритной трансформаторной мощности, которая превышает электрическую.
Расчетная формула такой взаимосвязи:
Sо х Sс = 100 х Рг / (2,22 х Вс х А х F х Ко х Кc), где
- Sо — показатели площади окна сердечника;
- Sс — площадь поперечного сечения сердечника;
- Рг — габаритная мощность;
- Bс — магнитная индукция внутри сердечника;
- А — токовая плотность в проводниках на обмотках;
- F — показатели частоты переменного тока;
- Ко — коэффициент наполненности окна;
- Кс — коэффициент наполненности сердечника.
Показатели трансформаторной мощности равны уровню нагрузки на вторичной обмотке и потребляемой мощности из сети на первичной обмотке.
По нагрузке
При выборе трансформатора учитывается несколько основных параметров, представленных:
- категорией электрического снабжения;
- перегрузочной способностью;
- шкалой стандартных мощностей приборов;
- графиком нагрузочного распределения.
В настоящее время типовая мощность трансформатора стандартизирована.
Чтобы выполнить расчет присоединенной к трансформаторному прибору мощности, необходимо собрать и проанализировать данные обо всех подключаемых потребителях. Например, при наличии чисто активной нагрузки, представленной лампами накаливания или ТЭНами, достаточно применять трансформаторы с показателями мощности на уровне 250 кВА.
Определение габаритной мощности трансформатора
Показатели габаритной мощности трансформатора могут быть приблизительно определены в соответствии с сечением магнитопровода. В этом случае уровень погрешности часто составляет порядка 50%, что обусловлено несколькими факторами.
Трансформаторная габаритная мощность находится в прямой зависимости от конструкционных характеристик магнитопровода, а также качественных показателей материала и толщины стали. Немаловажное значение придаётся размерам окна, индукционной величине, сечению проводов на обмотке, а также изоляционному материалу, который располагается между пластинами.
Безусловно, вполне допустимо экспериментальным и стандартным расчётным способом выполнить самостоятельное определение максимальной трансформаторной мощности с высоким уровнем точности. Однако, в приборах заводского производства такие данные учтены, и отражаются количеством витков, располагающихся на первичной обмотке.
Таким образом, удобным способом определения этого показателя является оценка размеров площади сечения пластин: Р = В х S² / 1,69
В данной формуле:
- параметром P определяется уровень мощности в Вт;
- B — индукционные показатели в Тесла;
- S — размеры сечения, измеряемого в см²;
- 1,69 — стандартные показатели коэффициента.
Индукционная величина — табличные показатели, которые не могут быть максимальными, что обусловлено риском значительного отличия магнитопроводов с разным уровнем качественных характеристик.
Расчет понижающего трансформатора
Выполнить самостоятельно расчет показателей мощности для однофазного трансформатора понижающего типа – достаточно легко. Поэтапное определение:
- показателей мощности на вторичной трансформаторной обмотке;
- уровня мощности на первичной трансформаторной обмотке;
- показателей поперечного сечения трансформаторного сердечника;
- фактического значения сечения трансформаторного сердечника;
- токовых величин на первичной обмотке;
- показателей сечения проводов на первичной и вторичной трансформаторных обмотках;
- количества витков на первичной и вторичной обмотках;
- общего числа витков на вторичных обмотках с учетом компенсационных потерь напряжения в кабеле.
На заключительном этапе определяются показатели площади окна сердечника и коэффициента его обмоточного заполнения. Определение сечения сердечника, как правило, выражается посредством его размеров, в соответствии с формулой: d1=А х В, где «А» — это ширина, а «В» — толщина.
Упрощенный расчет 220/36 В
Стандартный трансформатор с 220/36 В, представлен тремя основными компонентами в виде первичной и вторичной обмотки, а также магнитопровода. Упрощенный расчет силового трансформатора включает в себя определение сечения сердечника, количества обмоточных витков и диаметра кабеля. Исходные данные для простейшего расчета представлены напряжением на первичной U1 и на вторичной обмотке – U2, а также током на вторичной обмотке или I2.
В результате упрощенного расчета устанавливается зависимость между сечением сердечника Sсм², возведенным в квадрат и общей трансформаторной мощностью, измеряемой в Вт. Например, прибором с сердечником, имеющим сечение 6,0 см², легко «перерабатывается» мощность в 36 Вт.
При расчете используются заведомо известные параметры в виде мощности и напряжения на вторичной цепи, что позволяет вычислить токовые показатели первичной цепи. Одним из важных параметров является КПД, не превышающий у стандартных трансформаторов 0,8 единиц или 80%.
Сами занимаетесь установкой электрооборудования? Схема подключения трансформатора представлена на нашем сайте.
Подозреваете, что трансформатор неисправен? О том, как проверить его мультиметром, вы можете почитать тут.
Чем отличается трансформатор от автотрансформатора, вы узнаете из этой темы.
Показатели полной или полезной мощности многообмоточных трансформаторов, являются суммой мощностей на всех вторичных обмотках прибора. Знание достаточно простых формул позволяет не только легко произвести расчёт мощности прибора, но также самостоятельно изготовить надежный и долговечный трансформатор, функционирующий в оптимальном режиме.
Видео на тему
Как определить мощность трансформатора по формуле
В быту и технике широко применяется низковольтная аппаратура. Этот факт требует использования устройств, понижающих стандартное напряжение до необходимого уровня. Нужно создать прибор, который соответствует предъявляемым нормам. Перед электриком встаёт задача, как определить мощность трансформатора. Знание элементарных физических законов помогает решить проблему.
Теория и история
Латинское слово transformare переводится на русский язык как «превращение». Трансформатор предназначен для изменения уровня входного напряжения на определённую величину. Устройство состоит из одной или нескольких обмоток на замкнутом магнитопроводе. Катушки наматываются из алюминиевого или медного провода. Сердечник набирается из пластин с повышенными ферромагнитными свойствами.
Первичная обмотка присоединяется к электрической сети переменного тока. Во вторичную обмотку включается устройство, которому требуется напряжение другой величины.
После подключения к трансформатору питания в магнитопроводе появляется замкнутый магнитный поток, который индуцирует в каждой катушке переменную электродвижущую силу. Закон Фарадея гласит, что ЭДС равна скорости изменения магнитного потока, который проходит через электромагнитный контур. Знак «минус» указывает на противоположность направлений магнитного поля и ЭДС.
Формула e = − n (∆Ф ∕ ∆ t) объединяет следующие понятия:
- Электродвижущая сила e, исчисляемая в вольтах.
- Количество витков n в индукторе.
- Магнитный поток Ф, единица измерения которого называется вебером.
- Время t, необходимое для одной фазы изменения магнитного поля.
Учитывая незначительность потерь в катушке индуктивности, ЭДС приравнивается к напряжению в обмотке. Отношение напряжений в первичной и вторичной обмотке равно отношению количества витков в двух катушках. Отсюда выводится формула трансформатора:
K ≈ U ₁ ∕ U ₂ ≈ n ₁ ∕ n ₂.
Коэффициент K всегда больше единицы. В трансформаторе изменяется только напряжение и сила тока. Умноженные друг на друга, они определяют мощность прибора, постоянную величину для конкретного устройства. Соотношение тока и напряжения в обмотках раскрывает формула:
K = n₁ ∕ n₂ = I ₂ ∕ I₁ = U₁ ∕ U₂.
Иначе говоря, во сколько раз уменьшено напряжение во вторичной обмотке в сравнении с напряжением в первичной катушке, во столько раз сила тока во вторичной катушке больше тока в первичной обмотке. Различное напряжение устанавливается количеством витков в каждом индукторе. Формула, описывающая коэффициент K, объясняет, как рассчитать трансформатор.
Трансформатор предназначен для работы в цепи переменного напряжения. Постоянный ток не индуцирует ЭДС в магнитопроводе, и электрическая энергия не передаётся в другую обмотку.
Ещё в 1822 году Фарадей озаботился мыслью, как превратить магнетизм в электрический ток. Многолетние исследования приводят к созданию цикла статей, в которых описывалось физическое явление электромагнитной индукции. Фундаментальный труд публиковался в научном журнале английского Королевского общества.
Суть опытов состояла в том, что исследователь намотал два куска медной проволоки на кольцо из железа. К одной из катушек подключался постоянный ток. Гальванометр, соединённый с контактами другой обмотки, фиксировал кратковременное появление напряжения. Чтобы восстановить индукцию, экспериментатор отключал источник питания, а затем вновь замыкал контакты на батарею.
Работу Майкла Фарадея высоко оценило научное сообщество Великобритании. В 1832 году физик удостоился престижной награды. За выдающиеся работы в области электромагнетизма учёный награждён медалью Копли.
Однако устройство, собранное Фарадеем, ещё трудно назвать трансформатором. Аппарат, который действительно преобразовывал напряжение и ток, запатентован в Париже 30 ноября 1876 года. В 80-х годах позапрошлого столетия автор изобретения и конструктор трансформатора П. Н. Яблочков жил во Франции. В это же время выдающийся русский электротехник представил миру и прообраз прожектора — «свечу Яблочкова».
Расчёт параметров прибора
Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.
Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.
Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.
Определение мощности
Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:
P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50
Округление осуществляется в бо́льшую сторону. Результат 50 Вт.
Вычисление сечения сердечника
От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.
S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49
Поперечное сечение сердечника должно иметь площадь не менее 8‚49 см².
Расчёт количества витков
Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:
n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.
Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.
Токи в обмотках
Следующий этап — нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.
В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.
Диаметр провода
Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:
d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.
Для намотки выходной обмотки потребуется провод с диаметром:
d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.
Размеры определены в миллиметрах. После округления получается, что первичная катушка наматывается проволокой толщиной 0‚5 мм, а на вторичную обмотку подойдёт провод в 1 мм.
Виды и применение трансформаторов
Области использования трансформаторов разнообразны. Устройства, повышающие напряжение, эксплуатируются в промышленных целях для транспортировки электроэнергии на значительные расстояния. Понижающие трансформаторы используются в радиоэлектронике и для подсоединения бытовой техники.
Некоторые народные умельцы, недовольные пониженным напряжением в сети, рискуют включать бытовые приборы через повышающий трансформатор. Спонтанный скачок напряжения может привести к тому, что яркий комнатный свет заменит очень яркое пламя пожара.
По задачам, которые решает трансформатор, приборы делятся на основные виды:
- Автотрансформатор имеет один магнитопровод, на котором собран индуктор. Часть витков выполняет функции первичной обмотки, а остальные витки действуют как вторичные катушки.
- Преобразователи напряжения работают в измерительных приборах и в цепях релейной защиты.
- Преобразователи тока предназначены для гальванической развязки в сетях сигнализации и управления.
- Импульсные трансформаторы применяются в вычислительной технике, автоматике, системах связи.
- Силовые устройства работают с напряжением до 750 киловольт.
Любое изменение параметров электричества в цепи связано с трансформатором. Специалисту, проектирующему электронные схемы, необходимо знание природы электромагнетизма. Технология расчёта обмоток трансформатора основана на базовых формулах физики.
Электротехнику, занятому рутинным делом намотки трансформатора, стоит помянуть добрым словом дядюшку Фарадея, который открыл замечательный закон электромагнитной индукции. Глядя на готовое устройство, следует также вспомнить великого соотечественника, русского изобретателя Павла Николаевича Яблочкова.