Принцип действия полевого транзистора кратко
Принцип действия полевого транзистора кратко
Рис. 12.1. Условное графическое обозначение полевых транзисторов
В 1926 году был открыт полевой эффект и указан его недостаток — поверхностные волны в металле не позволяли проникать полю затвора в канал. Однако в 1952 году Уильям Шокли исследовал влияние управляющего p-n перехода на ток в канале, а в 1959 году Джон Аталла и Дэвон Канг из Bell Labs изготовили полевой транзистор с изолированным затвором по технологии МОП металлический (Al) затвор, изолятор оксид кремния (SiO2) и канал-полупроводник (Si).
Система обозначений транзисторов была рассмотрена в лекции 6, и для полевых транзисторов, как и для биполярных, установлена отраслевым стандартом ОСТ 11336.919 – 81 и его последующими редакциями.
12.2. Устройство и принцип действия полевых транзисторов с управляющим p-n переходом
Рассмотрим физические процессы, происходящие в полевом транзисторе с управляющим p-n переходом и каналом n-типа, схематичное изображение которого представлено на рис. 12.2.
Рис. 12.2. Полевой транзистор с управляющим p-n переходом и каналом n-типа
Такая конструкция, в которой электроды расположены в одной плоскости, называется планарной. В исходном полупроводниковом материале методом диффузии создаётся легированная область n – канал. Затем на поверхности образуют сток, исток и затвор таким образом, что канал получается под затвором. Нижняя область исходного полупроводника – подложка – обычно соединяется с затвором. Исток подключают к общей точке источников питания, и напряжения на стоке и затворе измеряют относительно истока.
Изменение проводимости канала осуществляется изменением напряжения, прикладываемого к p-n переходам затвора и подложки. На рис. 12.3. представлены графики статических характеристик. Поскольку ток затвора не зависит от напряжения U ЗИ, входная характеристика отсутствует. Вместо неё применяется сток — затворная характеристика передачи . Выходная характеристика – это зависимость тока стока от напряжения на стоке при фиксированном напряжении на затворе .
Рис. 12.3. Статические характеристики полевого транзистора с управляющим p-n переходом
При U ЗИ = 0 толщина p-n – переходов затвора и подложки минимальна, канал «широкий» и проводимость его наибольшая. Под действием напряжения U СИ по каналу будет проходить ток, создаваемый основными носителями зарядов – электронами. На участке напряжений от 0 до U СИ.НАС ток будет нарастать и достигнет величины I С.нач – начального тока стока. Дальнейшее увеличение напряжения на стоке повышает напряжённость поля в запорном слое p-n переходов затвора и подложки, но не увеличивает ток стока. Когда напряжение на стоке достигнет U СИ.макс, может наступить электрический пробой по цепи сток – затвор, что показывает вертикальная линия роста тока на выходной характеристике.
Если отрицательное напряжение на затворе увеличивать, то, в соответствии с эффектом Эрли, толщина p-n – переходов затвора и подложки начнёт увеличиваться за счёт канала, сечение канала будет уменьшаться. Ток стока будет ограничен на меньшем уровне. Если и дальше увеличивать отрицательное напряжение на затворе, то, при некоторой его величине, называемой напряжением отсечки U ЗИотс, p-n переходы затвора и подложки сомкнутся и перекроют канал. Движение электронов в канале прекратится, ток стока будет равен нулю, и не будет зависеть от напряжения на стоке.
Следовательно, полевой транзистор с управляющим p-n–переходом до напряжения на стоке U СИ.НАС работает как регулируемое сопротивление, а на горизонтальных участках выходных характеристик может использоваться для усиления сигналов в режиме нагрузки.
Отличие полевых транзисторов с изолированным затвором состоит в том, что у них между металлическим затвором и полупроводником-каналом находится слой диэлектрика, в качестве которого используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния методом высокотемпературного окисления. Существуют два типа полевых транзисторов с изолированным затвором: с индуцированным каналом и с встроенным каналом.
Рассмотрим принцип действия полевого транзистора с индуцированным каналом n-типа, упрощённая конструкция которого представлена на рис. 12.4.
Основой транзистора является подложка – пластина Si с проводимостью р типа и с высоким удельным сопротивлением. На поверхности подложки методом диффузии создаются две сильно легированные области с проводимостью n типа, не соединённые между собой. К ним подключают металлические контакты, которые будут выводами стока и истока. Поверхность пластины покрывают слоем SiO2, на который между стоком и истоком наносят слой металла – затвор. Подложку обычно электрически соединяют с истоком.
При U ЗИ = 0, даже если между стоком и истоком приложено напряжение, транзистор закрыт, и в цепи стока протекает малый обратный ток p-n перехода между стоком и подложкой (рис. 12.4, а).
Полевой МОП (MOSFET) транзистор
Что такое MOS, MOSFET, МОП транзистор?
Как часто вы слышали название МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором? Да-да… это все слова синонимы и относятся они к одному и тому же радиоэлементу.
Полное название такого радиоэлемента на английский манер звучит как Metal Oxide Semiconductor Field Effect Transistors (MOSFET), что в дословном переводе звучит как Металл Оксид Полупроводник Поле Влияние Транзистор. Если преобразовать на наш могучий русский язык, то получается как полевой транзистор со структурой Металл Оксид Полупроводник или просто МОП-транзистор ;-). Почему МОП-транзистор также называют МДП-транзистором и транзистором с изолированным затвором? С чем это связано? Об этих и других вещах вы узнаете в нашей статье. Не переключайтесь на другую вкладку! 😉
Виды МОП-транзисторов
В семействе МОП-транзисторов в основном выделяют 4 вида:
1) N-канальный с индуцированным каналом
2) P-канальный с индуцированным каналом
3) N-канальный со встроенным каналом
4) P-канальный со встроенным каналом
Как вы могли заметить, разница только в обозначении самого канала. С индуцированным каналом он обозначается штриховой линией, а со встроенным каналом – сплошной.
В современном мире МОП-транзисторы со встроенным каналом используются все реже и реже, поэтому в наших статьям мы их затрагивать не будем, а будем рассматривать только N и P – канальные транзисторы с индуцированным каналом.
Откуда пошло название “МОП”
Начнем наш цикл статей про МОП-транзисторы именно с самого распространенного N-канального МОП-транзистора с индуцированным каналом. Go!
Если взять тонкий-тонкий нож и разрезать МОП-транзистор вдоль, то можно увидеть вот такую картину:
Если рассмотреть с точки зрения еды на вашем столе, то МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа – толстый кусок хлеба, диэлектрик – тонкий кусок колбасы, а сверху кладем еще слой металла – тонкую пластинку сыра. И у нас получается вот такой бутерброд:
А как будет строение транзистора сверху-вниз? Сыр – металл, колбаса – диэлектрик, хлеб – полупроводник. Следовательно получаем Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП – Металл-Диэлектрик-Полупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором ;-). А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO2), можно сказать что почти стекло, то и вместо названия “диэлектрик” взяли название “оксид, окисел”, и получилось Металл-Окисел-Полупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места 😉
Строение полевого МОП-транзистора
Давайте еще раз рассмотрим структуру нашего МОП-транзистора:
Имеем “кирпич” полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому их концентрация в данном материале намного больше, чем электронов. Но электроны тоже есть в P-полупроводнике. Как вы помните, электроны в P-полупроводнике – это неосновные носители и их концентрация очень мала, по сравнению с дырками. “Кирпич” P-полупроводника носит название Подложки. Она является основой МОП-транзистора, так как на ней создаются другие слои. От подложки выходит вывод с таким же названием.
Другие слои – это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.
Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод и называется Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором.
Подложка полевого МОП-транзистора
Итак, смотря на рисунок выше, мы видим, что МОП-транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор, Подложка), а в реальности только 3. В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:
Поэтому, требуется соблюдать цоколевку при подключении МОП-транзистора в схему.
Принцип работы МОП-транзистора
Тут все то же самое как и в полевом транзисторе с управляющим PN-переходом. Исток – это вывод, откуда начинают свой путь основные носители заряда, Сток – это вывод, куда они притекают, а Затвор – это вывод, с помощью которого мы контролируем поток основных носителей.
Пусть Затвор у нас пока что никуда не подключен. Для того, чтобы устроить движуху электронов через Исток-Сток, нам потребуется источник питания Bat:
Если рассмотреть наш транзистор с точки зрения P-N переходов и диодов на их основе, то можно нарисовать эквивалентную схемку для нашего рисунка. Она будет выглядеть вот так:
И-исток, П-Подложка, С-Сток.
Как вы видите, диод VD2 включен в обратном направлении, так что электрический ток никуда не потечет.
Значит, в этой схеме
никакой движухи электрического тока не намечается.
Индуцирование канала в МОП-транзисторе
Если подать определенное напряжение на Затвор, в подложке начинаются волшебные превращения. В ней начинает индуцироваться канал.
Индукция, индуцирование – это буквально означает “наведение”, “влияние”. Под этим термином понимают возбуждение в объекте какого-либо свойства или активности в присутствии возбуждающего субъекта (индуктора), но без непосредственного контакта (например, через электрическое поле). Последнее выражение для нас имеет более глубокий смысл: “через электрическое поле”.
Также нам не помешает вспомнить, как ведут себя заряды различных знаков. Те, кто не играл на физике на последней парте в морской бой и не плевал через корпус шариковой ручки бумажными шариками в одноклассниц, тот наверняка вспомнит, что одноименные заряды отталкиваются, а разноименные – притягиваются:
На основе этого принципа еще в начале ХХ века ученые сообразили, где все это можно применить и создали гениальный радиоэлемент. Оказывается, достаточно подать на Затвор положительное напряжение относительно Истока, как сразу под Затвором возникает электрическое поле. А раз подаем на Затвор положительное напряжение, значит он будет заряжаться положительно не так ли?
Так как у нас слой диэлектрика очень тонкий, следовательно, электрическое поле будет также влиять и на подложку, в которой дырок намного больше, чем электронов. А раз и на Затворе положительный потенциал и дырки обладают положительным зарядом, следовательно, одноименные заряды отталкиваются, а разноименные – притягиваются. Картина будет выглядеть следующим образом пока что без источника питания между Истоком и Стоком:
Дырки обращаются в бегство подальше от Затвора и поближе к выводу Подложки, так как одноименные заряды отталкиваются, а электроны наоборот пытаются пробиться к металлической пластинке затвора, но им мешает диэлектрик, который не дает им воссоединиться с Затвором и уравнять потенциал до нуля. Поэтому электронам ничего другого не остается, как просто создать вавилонское столпотворение около слоя диэлектрика.
В результате, картина будет выглядеть следующим образом:
Видели да? Исток и Сток соединились тонким каналом из электронов! Говорят, что такой канал индуцировался из-за электрического поля, которое создал Затвор транзистора.
Так как этот канал соединяет Исток и Сток, которые сделаны из N+ полупроводника, следовательно у нас получился N-канал. А такой транзистор уже будет называться N-канальным МОП-транзистором. Если вы читали статью проводники и диэлектрики, то наверняка помните, что в проводнике очень много свободных электронов. Так как Сток и Исток соединились мостиком из большого количества электронов, следовательно этот канал стал проводником для электрического тока. Проще говоря, между Истоком и Стоком образовался “проводок”, по которому может бежать электрический ток.
Получается, если подать напряжение между Стоком и Истоком при индуцированном канале, то мы можем увидеть вот такую картину:
Как вы видите, цепь стает замкнутой и в цепи начинает спокойно протекать электрический ток.
Но это еще не все! Чем сильнее электрическое поле, тем больше концентрация электронов, тем толще получается канал. А как сделать поле сильнее? Достаточно подать побольше напряжения на Затвор 😉 Подавая бОльшее напряжение на Затвор с помощью Bat2, мы увеличиваем толщину канала, а значит и его проводимость! Или простыми словами, мы можем менять сопротивление канала, “играя” напряжением на затворе 😉 Ну гениальнее некуда!
Работа P-канального МОП-транзистора
В нашей статье мы разобрали N-канальный МОП транзистор с индуцированным каналом. Также есть еще и P-канальный МОП-транзистор с индуцированным каналом. P-канальный работает точно также, как и N-канальный, но вся разница в том, что основными носителями будут являться уже дырки. В этом случае все напряжения в схеме меняем на инверсные, в отличие от N-канального транзистора:
На ютубе нашел очень неплохое видео, поясняющее работу полевого МОП-транзистора. Рекомендую к просмотру (не реклама):
Транзисторы: принцип работы, схема подключения, отличие биполярного от полевого
В свое время за открытие транзистора его создатели удостоились Нобелевской премии. Этот маленький прибор изменил человечество навсегда: начиная с простых радиоприемников и заканчивая процессорами, в которых их число достигает нескольких миллиардов. Между тем, чтобы узнать, как он работает, не нужно быть золотым медалистом или лауреатом «нобелевки».
Что такое транзистор
Транзистор – это прибор, изготовленный из полупроводниковых материалов. Выглядит как маленькая металлическая пластинка с тремя контактами. Назначений у него два: усиливать поступающий сигнал и участвовать в управлении компонентами электроприборов.
Принцип действия
Полупроводники занимают промежуточное состояние между проводниками и диэлектриками. В обычном состоянии они не проводят электрический ток, но их сопротивление падает с ростом температуры. Чем она выше, тем больше энергии, которую получает вещество.
В атомах полупроводника электроны отрываются от «родительского» атома и улетают к другому, чтобы заполнить там «дырку», которую оставил такой же электрон. Получается, что внутри такого материала одновременно происходят два процесса: полет электронов (n-проводимость, от слова negative – отрицательный), и образование «дырок» (p-проводимость от слова positive – положительный). В обычном куске кремния эти процессы уравновешены: количество дырок равно количеству свободных электронов.
Однако с помощью специальных веществ можно нарушить это равновесие, добавив «лишние» электроны (вещества – доноры) или «лишние» «дырки» (вещества акцепторы). Таким образом можно получить кристалл полупроводника с преобладающей n-проводимостью, либо p-проводимостью.
Если два таких материала приложить друг к другу, то в месте их соприкосновения образуется так называемый p-n переход. Дырки и электроны проходят через него, насыщая соседа. То есть там, где был избыток дырок, идет их заполнение электронами и наоборот.
В какой-то момент в месте соприкосновения не останется свободных носителей заряда и наступит равновесие. Это своего рода барьер, который невозможно преодолеть, этакая пустыня. Этот слой принято называть обедненным слоем.
Теперь, если приложить к такому материалу напряжение, то оно поведет себя интересным образом: при прямой его направленности обедненный слой истончится и через него пойдет электроток, а при обратном – наоборот, расширится.
Как говорится, если для чайников, то p-n переход обладает способностью пропускать ток только в одном направлении. Это своего рода «обратный клапан» для электрической сети. На этом их свойстве основана работа всех полупроводниковых приборов.
Существует две основные разновидности транзисторов: полевые (иногда их называют униполярными) и биполярными. Различаются они по устройству и принципу действия.
Биполярный транзистор
Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.
Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.
В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.
Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.
Полевой транзистор
Если в биполярном транзисторе управление происходило с помощью тока, то в полевом – с помощью напряжения. Состоит он из пластинки полупроводника, которую называют каналом. С одной стороны к ней подключен исток – через него в канал входят носители электрического тока, а с другой сток – через него они покидают канал.
Сам канал как бы «зажат» между затвором, который обладает обратной проводимостью, то есть если канал имеет n-проводимость, то затвор – p-проводимость. Затвор электрически отделен от канала. Изменяя напряжение на затворе, можно регулировать зону p-n перехода. Чем она больше, тем меньше электрической энергии проходит через канал. Существует значение напряжения, при котором затвор полностью перекроет канал и ток между истоком и стоком прекратится.
Наиболее наглядная иллюстрация в этом случае – садовый шланг, который проходит через камеру небольшого колеса. В таком случае, даже когда в него подается небольшое давление воздуха (напряжение затвор-исток), оно значительно увеличивается в размерах и начинает пережимать шланг, перекрывается просвет шланга и прекращается подача воды (увеличивается зона p-n перехода и через канал перестает идти электроток).
Описанный выше тип полупроводникового прибора является классическим и называется транзистором с управляющим p-n переходом. Часто можно встретить аббревиатуру JFET – Junction FET, что просто перевод русского названия на английский.
Другой тип полевого триода имеет небольшое различие в конструкции затвора. На слое кремния с помощью окисления образуется слой диэлектрика оксида кремния. Уже на него методом напыления металла наносят затвор. Получаются чередующиеся слои Металл -Диэлектрик – Полупроводник или МДП-затвор.
Такой полевой транзистор с изолированным затвором обозначается латинскими буквами MOSFET.
Существует два вида МДП-затвора:
- МДП-затвор с индуцированным (или инверсным) каналом в обычном состоянии закрыт, то есть при отсутствии напряжения на затворе электроток через канал не проходит. Для того, чтобы открыть его, к затвору необходимо приложить напряжение.
- МДП-затвор со встроенным (или собственным) каналом в обычном состоянии открыт, то есть при отсутствии напряжения на затворе электроток через канал проходит. Для того, чтобы закрыть его, к затвору необходимо приложить напряжение.
Основные характеристики
Основная особенностью всех видов транзисторов является способность управлять мощным током с помощью небольшого по силе. Их отношение показывает насколько эффективен полупроводниковый прибор.
В биполярных транзисторах этот показатель называется статическим коэффициентом передачи тока базы. Он характеризует, во сколько раз основной коллекторный ток больше вызвавшего его тока базы. Этот параметр имеет очень широкое значение и может достигать 800.
Хотя на первый взгляд кажется, что здесь важен принцип «чем больше, тем лучше», но в действительности это не так. Скорее, тут применимо изречение «лучше меньше, да лучше». В среднем биполярные транзисторы имеют коэффициент передачи тока базы в пределах 10 – 50.
Для полевых транзисторов схожий по типу параметр называется крутизной входной характеристики или проводимостью прямой передачи тока. Если вкратце, он показывает, на сколько изменится напряжение, проходящее через канал, если изменить напряжение затвора на 1 В.
Если на транзистор подать сигнал с определенной частотой, то он многократно усилит его. Это свойство полупроводниковых приборов применяется в радиоэлектронике. Однако существует предел усиления частоты, за которым триод уже не в состоянии усилить сигнал.
Поэтому оптимальным считается максимальная рабочая частота сигнала, в 10-20 раз ниже предельного усиления частоты транзистора.
Еще одной показательной характеристикой транзистора является максимальная допустимая рассеиваемая мощность. Дело в том, что при работе любого электрического прибора вырабатывается тепло. Оно тем больше, чем выше значения силы тока и напряжения в цепи.
Отводится оно несколькими способами: с помощью специальных радиаторов, принудительного обдува воздухом и другими. Таким образом, существует некий предел количества теплоты для любого триода (для каждого он разный), который он может рассеять в пространство. Поэтому при выборе прибора исходят из характеристик электрической цепи, на который предстоит установить транзистор.
Типы подключений
Основная задача транзистора – усиливать поступающий сигнал. Проблема в том, что у любого триода имеются только три контакта, в то время как сам усилитель имеет четыре полюса – два для входящего сигнала и два для выходящего, то есть усиленного. Выход из положения – использовать один из контактов транзистора дважды: и как вход, и как выход.
По этому принципу различают три вида подключения. Стоит отметить, что не имеет принципиальной разницы, какой тип прибора используется – полевой или биполярный.
- Подключение с общим эмиттером (ОЭ) или общим истоком (ОИ). Эта схема подключения имеет наибольшие значения усиления мощности по току и напряжению. Однако из-за эффекта Миллера его частотные характеристики значительно хуже. Борются с этим негативным явлением несколькими способами: используют подключение с общей базой, применяют каскодное подключение двух транзисторов (подключённому по общему эмиттеру добавляется второй, подключенный по общей базе).
- Подключение с общей базой (ОБ) или общим затвором (ОЗ). Здесь полностью исключено влияние эффекта Миллера. Однако за это приходиться платить: в этой схеме усиления тока практически не происходит, зато имеется широкий диапазон для изменения частоты сигнала.
- Подключение с общим коллектором (ОК) или общим стоком (ОС). Такой тип подключения часто называют эмиттерным или истоковым повторителем. Это «золотая середина» между двумя предыдущими видами схем: частотные характеристики и мощность усиления по току и напряжению находятся где-то посередине между двумя первыми.
Все три описанных выше типа подключения применяются в зависимости от того, какие цели преследуют конструкторы.
Виды транзисторов
В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.
В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.
Другие классификации транзисторов:
- По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
- Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
- Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
- К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
- В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.
Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.
Применение полевых транзисторов
Для того чтобы быстро изменить силу тока в усилительных схемах, лампочках или электрических двигателях применяют транзисторы. Они умеют ограничивать силу тока плавно и постепенно или специальным методом «импульс-пауза». Второй способ особо часто используется при широтно-импульсной модуляции и управления. Если используется мощный источник тока, то транзистор проводит его через себя и регулирует параметр слабым значением. Если тока маловато, то используют сразу несколько транзисторов, обладающих большей чувствительностью. Соединять в таком случае их нужно каскадным образом. В этой статье будет рассмотрено, как открыть полевой транзистор, какой принцип работы полевого транзистора для чайников и какие обозначения выводов полевой транзистор имеет.
Что это такое
Полевой транзистор — это радиоэлемент полупроводникового типа. Он используется для усиления электросигнала. В любом цифровом приборе схема с полевым транзистором исполняет роль ключа, который управляет переключением логических элементов прибора. В этом случае использование ПТ является очень выгодным решением проблемы с точки зрения уменьшения размеров устройства и платы. Обусловлено это тем, что цепь управления радиокомпонентами требует не очень большой мощности, а значит, что на одном кристалле могут располагаться тысячи и десятки тысяч транзисторов.
Материалами, из которых делают полупроводниковые элементы и транзисторы в том числе, являются:
- Фосфид индия;
- Нитрид галлия;
- Арсенид галлия;
- Карбид кремния.
Важно! Полевые транзисторы также называют униполярными, так как при протекания через них электротока используется только один вид носителей.
Характеристики полевого транзистора
Основными характеристики полевого транзистора являются:
- Максимально допустимая постоянная рассеиваемая мощность;
- Максимально допустимая рабочая частота;
- Напряжение сток-исток;
- Напряжение затвор-сток;
- Напряжение затвор-исток;
- Максимально допустимый ток стока;
- Ток утечки затвора;
- Крутизна характеристики;
- Начальный ток стока;
- Емкость затвор-исток;
- Входная ёмкость;
- Выходная ёмкость;
- Проходная ёмкость;
- Выходная мощность;
- Коэффициент шума;
- Коэффициент усиления по мощности.
Как он работает
Полевой транзистор включает нескольких составных элементов — истока (источника носителя заряда наподобие эмиттера на биполярном элементе), стока (приемника заряда по аналогии с коллектором) и затвора (управляющего электрода наподобие сетки в лампах или базы). Работа первых двух очевидна и состоит в генерации и приеме носителя электрозаряда, среди которых электроны и дырки. Затвор же нужен в первую очередь для управления электротоком, который протекает через ПТ. То есть, получается классического вида триод с катодом, анодом и электродом управляющего типа.
Когда происходит подача напряжения на затвор, возникает электрополе, которое изменяет ширину определенных переходов и влияет на параметр электротока, протекающего от истока к стоку. Если управляющее напряжение отсутствует, то ничто не будет препятствовать потоку носителей заряда в виде электронов. Когда напряжение управления повышается, то канал, по которому движутся электроны или дырки, наоборот, уменьшается, а при достижении некоего предела закрывается совсем, и полевой транзистор входит в так называемый режим отсечки. Именно эта характеристика ПТ делает возможным их применение в качестве ключей.
Свойства усиления электротока этого радиокомпонента обусловлены тем, что сильный электрический ток, который протекает от истока к стоку, повторяет все динамические характеристика напряжения, прикладываемого к затвору. Другим языком, с выхода этого усилителя берется абсолютно такой же по форме сигнал, как и на электроде управления, только более сильный.
Строение ПТ (униполярного транзистора) немного отличается от биполярного. А именно тем, что электричество в нем пере пересекает определенные переходные зоны. Электрозаряды совершают движение по участку регуляции, который называется затвором. Его пропускная способность регулируется параметром напряжения.
Важно! Пространство зон транзистора под действием электрического поля уменьшается и увеличивается. Исходя из этого изменяется количество носителей зарядов — от их полного отсутствия до переизбытка.
Для чего нужен
ПТ нужны для того, чтобы управлять выходным током с помощью создаваемого электрического поля и изменять его важнейшие параметры. Структуры, созданные на основе полевого транзистора, часто используются в интегральных схемах цифрового и аналогового вида.
Именно за счет полевого управления, эти транзисторы воздействуют на величину приложенного к их затвору напряжения. Это отличает их от биполярных транзисторов, которые управляются током, который протекает через их базу. ПТ потребляют значительно меньшее количество электроэнергии, что и определило их популярность при использовании в ждущих и следящих устройствах, а также интегральных схемах малого потребления ( при организации спящего режима).
Важно! Одними из наиболее известных устройств, основанных на действии полевых транзисторов, являются пульты управления от телевизора, наручные часы электронного типа. Эти устройства за счет своего строения и применения ПТ могут годами работать от одного крошечного источника питания в виде батарейки.
Как открыть полевой транзистор
Для того чтобы полностью открыть полевой транзистор и запустить его работы в режиме ключа, напряжение базы-эмиттера должно быть больше 0,6-0,7 Вольт. Также сила электротока, текущая через базу должна быть такой, чтобы он мог спокойно протекать через коллектор-эмиттер без каких-либо препятствий. В идеальном случае, сопротивление через коллектор-эмиттер должно быть равным нулю, в реальности же оно будет иметь сотые доли Ома. Такой режим называется «режимом насыщения транзистора».
Как видно на схеме, коллектор и эмиттер находятся в режиме насыщения и соединены накоротко, что позволяет лампочке гореть «на полную».
Схема (структура)
На схеме ниже можно увидеть примерное строение транзистора полярного типа. Его выводы соединены с металлизированными участками затвора, истока и стока. Схема изображает именно p канальное устройство, затвором которого является n-слой. Он имеет гораздо меньшее удельное сопротивление, чем канальная область p-слоя. Область же перехода n-p в большей степени находится в p-слое.
Как подключить
Все зависит от того, каким именно образом полевой транзистор будет включаться в усилительный каскад. Таких способа есть три:
- С общим истоком;
- С общим стоком;
- С общим затвором.
Их различия заключаются в том, что они используют различные электроды подаются питающим напряжением и к каким электроцепям присоединен источник сигнала и нагрузка для него.
Общий исток наиболее часто используется для достижения максимального усиления сигнала входа. Общий сток используется для устройств согласования, потому что усиление там используется небольшое, но сигналы входа и выхода аналогичны по фазе. Схема с общим затвором применяется чаще всего в усилителях высокой частоты. При таком способе подключения полоса пропускания намного шире, чем в других способах.
Таким образом, полевой транзистор это очень важный полупроводниковый радиоэлемент, который способен управлять сопротивлением канала электротока путем воздействия на него поперечного электрического поля, создаваемого напряжением затвора.