Подшипники виды назначение применение
Виды подшипников. Преимущества и недостатки
Что такое подшипник
Подшипник (от «под шип») — сборочный узел, являющийся частью опоры или упора и поддерживающий вал, ось или иную подвижную конструкцию с заданной жёсткостью. Фиксирует положение в пространстве, обеспечивает вращение, качение или линейное перемещение (для линейных подшипников) с наименьшим сопротивлением, воспринимает и передаёт нагрузку от подвижного узла на другие части конструкции.
То есть подшипник — это опора, которая воспринимает нагрузки и допускает относительное перемещение частей механизма в требуемом направлении.
По виду трения подшипники делятся на подшипники скольжения и подшипники качения.
В чем разница между подшипниками качения и подшипниками скольжения
В подшипниках качения главенствующую роль играет трение качения, т.к. трение скольжения между сепаратором и телами качения, как правило, невелико. Поэтому в подшипниках качения, по сравнению с подшипниками скольжения, наблюдаются значительно меньшие потери энергии, а также меньший механический износ.
Широкое применение подшипников качения обусловлено рядом их преимуществ по сравнению с подшипниками скольжения меньшим моментом сопротивления вращению, особенно в начале движения, а также при малых и средних частотах вращения; большей несущей способностью на единицу ширины подшипника; полной взаимозаменяемостью; простотой эксплуатации; меньшим расходом смазочных материалов и цветных металлов; более низкими требованиями к материалам и термообработке валов.
Подшипники качения
Преимущества подшипников качения
- сравнительно малая стоимость вследствие массового производства
- малые потери на трение и незначительный нагрев при работе
- высокая взаимозаменяемость, что облегчает монтаж и ремонт машин при эксплуатации
- малый расход цветных металлов при изготовлении и смазочного материала при эксплуатации
- малые осевые размеры
Недостатки подшипников качения
- большие радиальные размеры
- чувствительность к ударным и вибрационным нагрузкам
- большая сопротивляемость вращению, шум и низкая долговечность на высоких скоростях вращения.
Подшипники качения состоят из:
- наружного и внутреннего колец с дорожками качения,
- тел качения (шариков или роликов),
- сепараторов, разделяющих и направляющих тела качения.
Сепаратор отделяет тела качения друг от друга и удерживает их на равном расстоянии. Большое влияние на работоспособность подшипника оказывает качество сепаратора. Сепараторы разделяют и направляют тела качения. В подшипниках без сепаратора тела качения набегают друг на друга. При этом кроме трения качения возникает трение скольжения, увеличиваются потери и износ подшипника. Установка сепаратора значительно уменьшает потери на трение, так как сепаратор является свободно плавающим и вращающимся элементом. Большинство сепараторов выполняют штампованными из стальной ленты.
По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцевых поверхностях колец упорных подшипников качения) выполняют желоба – дорожки качения, по которым при работе подшипника катятся тела качения.
В качестве тел качения используют шарики или ролики. Ролики могут быть тонкими и длинными, так называемые игольчатые ролики.
На что влияет разный тип тел качения?
Роликовые подшипники благодаря увеличенной контактной поверхности допускают значительно большие радиальные нагрузки, чем шариковые.
В то же время быстроходность роликовых подшипников ниже, чем шариковых, однако разница незначительная. Подшипники роликового типа обязательно требуют координации осей мест, на которые осуществляется посадка. Когда данный фактор обеспечить невозможно, появляется кромочное давление на дорожки, осуществляющие качение, что оказывает негативное влияние на качество данных подшипников.
Применение игольчатых подшипников позволяет уменьшить габариты (диаметр) при значительных нагрузках.
Виды подшипников качения
По виду тел качения
- Шариковые
- Роликовые (игольчатые, если ролики тонкие и длинные)
По типу воспринимаемой нагрузки
- Радиальные (нагрузка вдоль оси вала не допускается).
- Радиально-упорные, упорно-радиальные. Воспринимают нагрузки как вдоль, так и поперек оси вала. Часто нагрузка вдоль оси только одного направления.
- Упорные (нагрузка поперек оси вала не допускается).
- Линейные. Обеспечивают подвижность вдоль оси, вращение вокруг оси не нормируется или невозможно. Встречаются рельсовые, телескопические или вальные линейные подшипники.
- Шариковые винтовые передачи. Обеспечивают сопряжение винт-гайка через тела качения.
По числу рядов тел качения
По чувствительности к перекосам (по способности компенсировать несотносность вала и втулки):
- несамоустанавливающиеся, допускающие взаимный перекос колец до 8′.
- самоустанавливающиеся , допускающие взаимный перекос колец до 4º.
По материалу тел качений:
- Полностью стальные
- Гибридные (стальные кольца, тела качения неметаллические. Как правило, керамические)
При покупке подшипника также следует учитывать нагрузочную способность (или габариты) и точность подшипника.
Класс точности регламентирует величины предельных отклонений размеров, формы и расположения деталей подшипника. В зависимости от наличия требований к уровню вибраций, величине момента трения и других дополнительных технических требований подшипники разделяют на три категории — А, В и С. Обычно к подшипникам категории С не предъявляется никаких специальных требований. Следует отметить, что с повышением точности подшипника возрастает его стоимость.
СМАЗЫВАНИЕ ПОДШИПНИКОВ КАЧЕНИЯ
— под действием центробежных сил
Подшипники скольжения
Достоинства подшипников скольжения
- надежно работают в высокоскоростных приводах
- хорошо воспринимают ударные и вибрационные нагрузки (большая площадь поверхности и демпфирование масляного слоя)
- имеют небольшие радиальные размеры
- допускают установку на шейки коленчатых валов
- имеют относительно простую конструкцию
Недостатки подшипников скольжения
- сравнительно большие осевые размеры
- требуют постоянного контроля за наличием и качеством смазки
- имеют значительные потери на трение в период пуска и при плохой смазке.
Чаще всего, подшипник скольжения состоит из корпуса с цилиндрическим отверстием, куда вставляется втулка из материала с антифрикционными свойствами. В такой конструкции. обычно, предусмотрена также система смазки, которая обеспечивает поступление смазочного материала в зазор между валом и втулкой подшипника.
Рабочие зазоры в подшипниках, работающих со смазкой, рассчитываются на основе гидродинамической теории. При этом, находится минимальная толщина слоя смазки в микрометрах, температура и давление в этом слое, а также расход смазочного материала. Подшипники различной конструкции, с различными значениями скорости вращения цапфы и в разных условиях эксплуатации могут характеризоваться различными типами трения, которое может быть сухим, граничным, гидродинамическим или газодинамическим. Следует заметить, что даже подшипники с гидродинамическим трением при пуске механизма некоторое время работают в режиме граничного трения.
Смазка относится к числу основных факторов, определяющих надежность и срок службы подшипника. Функцией смазки является: обеспечение минимального трения между подвижными частями, отвод избыточного тепла, защита от неблагоприятных внешних факторов. При этом, смазка может быть: жидкой (синтетические и минеральные масла или вода для подшипников из неметаллических материалов); пластичной (смазки с использованием литиевого мыла или сульфоната кальция); твердой (дисульфид молибдена, графит и пр.); газовой (азот или инертные газы). Самыми высокими эксплуатационными параметрами обладают самосмазывающиеся пористые подшипники, которые изготовлены по технологии порошковой металлургии. Такой пористый подшипник, будучи пропитанным маслом, в процессе работы нагревается и смазка выдавливается из пор в рабочий зазор на трущиеся поверхности. В нерабочем состоянии такой подшипник остывает и смазка снова уходит в его поры.
В зависимости от допустимого направления рабочих нагрузок, подшипники разделяют на осевые (упорные) и радиальные.
Подшипники виды назначение применение
Подшипники качения. Общие сведения. Классификация и область применения
Подшипники качения, как и подшипники скольжения, предназначены для поддержания вращающихся осей и валов.
Подшипники качения – это опоры вращающихся или качающихся деталей, использующие элементы качения (шарики или ролики) и работающие на основе трения качения.
Электродвигатели, подъемно-транспортные и сельскохозяйственные машины, летательные аппараты, локомотивы, вагоны, металлорежущие станки, зубчатые редукторы и многие другие механизмы и машины в настоящее время немыслимы без подшипников качения. В настоящее время подшипники качения являются основным видом опор в машиностроении. Это самые массовые стандартизованные изделия в мире. Их изготовляют на специализированных подшипниковых заводах с наружным диаметром 1,0. 2600 мм и массой 0,5 г… 3500 кг. Самый большой подшипник качения имеет наружный диаметр – 14 м, внутренний – 12 м и массу – 130 тонн. Отечественная промышленность производит свыше 15 тыс. типоразмеров подшипников с внутренними посадочными диаметрами от 0,5 мм до 2 м и более общим количеством до миллиарда штук ежегодно.
Подшипник качения имеет, как правило, более сложную конструкцию в сравнении с подшипником скольжения и, в подавляющем большинстве случаев, является готовым (то есть изготовленным на специализированном предприятии) изделием, устанавливаемым в механизм или машину без какой-либо дополнительной доработки.
Подшипники качения состоят из двух колец — внутреннего 1 и наружного 3, имеющих дорожки качения, тел качения 2 (шариков, роликов или иголок) и сепаратора 4, разделяющего тела качения (рис. 16, а). Однако при необходимости снижения радиальных габаритов подшипниковых узлов одно или оба кольца подшипников, а также сепаратор могут отсутствовать. В этом случае тела качения катятся непосредственно по канавкам (дорожкам качения) вала или корпуса. В зависимости от: формы тел качения различают подшипники шариковые (рис. 16, д, б, ж, и) и роликовые (рис. 16, в, г, е, з, к). Разновидностью роликовых подшипников являются игольчатые подшипники (рис. 16, д).
Основными элементами подшипников качения являются тела качения — шарики или ролики, установленные между кольцами и удерживаемые сепаратором на определенном расстоянии друг от друга.
Внутреннее кольцо устанавливают на валу (оси), а наружное — в корпусе. Таким образом, цапфа вала и корпус разделяются телами качения. Это позволяет заменить трение скольжения трением качения и существенно снизить коэффициент трения. Основные стандартные размеры подшипника: d и D — внутренний и наружный диаметры; В — ширина колец.
Размеры подшипника — внутренний d и наружный D диаметры, ширина B (высота H) и радиусы r фасок колец — установлены ГОСТ 3478-79. Подшипники качения в диапазоне внутренних диаметров 3…10 мм стандартизованы через 1 мм, до 20 мм – через 2…3 мм, до 110 мм – через 5 мм.
Подшипниковые узлы, кроме подшипников качения, имеют корпус с крышками, устройства для крепления колец, защитные и смазочные устройства.
Материалы подшипников качения.
Материалы подшипников качения назначаются с учётом высоких требований к твёрдости и износостойкости колец и тел качения. Здесь используются шарикоподшипниковые высокоуглеродистые хромистые стали ШХ15 и ШХ15СГ, а также цементируемые легированные стали 18ХГТ и 20Х2Н4А. Твёрдость колец и роликов обычно HRC 60. 65, а у шариков немного больше – HRC 62. 66, поскольку площадка контактного давления у шарика меньше. Сепараторы изготавливают из мягких углеродистых сталей либо из антифрикционных бронз для высокоскоростных подшипников. Широко внедряются сепараторы из дюралюминия, металлокерамики, текстолита, пластмасс. Сепараторы высокоскоростных подшипников называют массивными и выполняют из текстолита, фторпласта, латуни, бронзы с предпочтительным центрированием их по наружному кольцу ПК.
В особых условиях хорошо зарекомендовали себя керамические подшипники из нитрида кремния Si3N4 (E = 3,1∙10 5 МПа; ρ = 3,2 г/см 3 ; Н = 80 HRC; t° до 1200°С; α t в 4 раза меньше, чем у стали). Но материал очень хрупкий. Практика показала, что лучше иметь комбинированные ПК: стальные кольца и керамические тела качения.
Для обеспечения нормальной и долговечной работы подшипников качения к качеству их изготовления и термической обработке тел качения и колец предъявляют высокие требования.
Подшипники качения в отличие от подшипников скольжения стандартизованы. Подшипники качения различных конструкций (диапазон наружных диаметров 1,0-2600 мм, масса 0,5-3,5 т, например, микроподшипники с шариками диаметром 0,35 мм и подшипники с шариками диаметром 203 мм) изготовляют на специализированных подшипниковых заводах.
Классификация подшипников качения.
Выпускаемые в СНГ подшипники качения классифицируют по направлению воспринимаемой нагрузки, в соответствии с ГОСТ3395-75 — радиальные, радиально-упорные, упорно-радиальные и упорные.
Рис. 16. Подшипники качения: а, б, в, г, д, е — радиальные подшипники; ж, з — радиально-упорные подшипники;
и, к — упорные подшипники; 1 — внутреннее кольцо; 2 — тело качения; 3 — наружное кольцо; 4— сепаратор
Радиальные подшипники (см. рис. 16, а-е) воспринимают (в основном) радиальную нагрузку, т. е. нагрузку, направленную перпендикулярно к геометрической оси вала.
Упорные подшипники (см. рис. 16, и, к) воспринимают только осевую нагрузку.
Радиально-упорные (см. рис. 16, ж, з) и упорно-радиальные подшипники могут одновременно воспринимать как радиальную, так и осевую нагрузку. При этом упорно-радиальные подшипники предназначены для преобладающей осевой нагрузки.
В зависимости от соотношения радиальных габаритных размеров (рис.16.1) наружного и внутреннего диаметров подшипники делят на серии (7 серии, при d – const, D – var): сверхлегкую, особо легкую, легкую, среднюю, тяжелую, легкую широкую, среднюю широкую. Основное распространение имеют легкие и средние узкие серии.
Рис. 16.1. Размерные серии подшипников качения: а- особо легкая; б –легкая;
в – легкая широкая; г- средняя; д – средняя широкая; е -тяжелая
по ширине (5 серии, при d и D – const, B(T) – var): особоузкие, узкие, нормальные, широкие и особо широкие.
В зависимости от серии при одном и том же внутреннем диаметре кольца подшипника наружный диаметр кольца и его ширина изменяются.
Точность подшипников качения определяется:
а) точностью основных размеров;
б) точность вращения.
Точность основных размеров определяется отклонениями размеров внутреннего и наружного диаметров и ширины кольца. Отклонения размеров диаметров определяет характер посадки.
Точность вращения характеризуется радиальным и боковым биением дорожки качения. В РФ подшипники качения выпускаются следующих классов в порядке возрастания точности:
По классам точности подшипники различают следующим образом (по ГОСТ 520-89):
«0» – нормального класса (радиальное биение внутреннего кольца 20 мкм);
«6» – повышенной точности (радиальное биение внутреннего кольца 10 мкм);
«5» – высокой точности (радиальное биение внутреннего кольца 5 мкм);
«4» – особовысокой точности (радиальное биение внутреннего кольца 3 мкм);
«2» – сверхвысокой точности (радиальное биение внутреннего кольца 2,5 мкм);
8 и 7 – грубые ниже 0;
6Х – только для роликовых конических подшипников.
При выборе класса точности подшипника необходимо помнить о том, что «чем точнее, тем дороже». Для иллюстрации соотношения точности подшипников разных классов и их стоимости ниже приведены максимальные величины радиальных биений внутренних колец подшипников с посадочными диаметрами 50…80 мм и относительная стоимость подшипников.
Виды подшипников
Шариковый подшипник
Наиболее распространенные радиальные подшипники используется в механизмах с прямозубыми шестернями, в которых нет осевых нагрузок. Шариковые подшипники при одинаковых размерах и большей частоте вращения имеют наименьшие трение. Пример: 305 подшипник шариковый радиальный выпускаются по ГОСТ 3478-79.
Радиально-упорный шариковый подшипник
В передачах, где вместе с радиальной нагрузкой присутствует осевая нагрузка, устанавливаются радиально упорные подшипники. Пример: 36206 подшипник шариковый радиально упорный ГОСТ 3478-79
Роликовый подшипник
Роликовые подшипники способны выдерживать большую нагрузку по сравнению с шариковыми. Поэтому при выборе подшипника учитываются нагрузки воспринимаемые подшипниками. Пример: 2209 подшипник роликовый радиальный однорядный без бортов на наружном кольце ГОСТ 3478-79.
Двухрядный роликовый подшипник
Для тяжело нагруженных передач применяют подшипник двухрядный, который работает с большими нагрузками. Увеличенный коэффициент трения двух рядных подшипников не позволяет работать при больших оборотах. Пример: 3182108 роликовый двухрядный подшипник без внешнего кольца ГОСТ 7634-75.
Игольчатый подшипник
Узлы, где из-за больших габаритов установка роликовых подшипников невозможна, устанавливают игольчатые подшипники. Конструктивно подшипники выпускаются со штампованной наружной обоймой, шейка вала играет роль внутренней обоймы, в отдельных случаях подшипник состоит из набора роликов, которые устанавливаются в корпусе. Пример: подшипник НК 121610 с одним наружным штампованным кольцом ГОСТ 4060-78.
Конические подшипники
В косозубых передачах устанавливаются шариковые, а в передачах с коническими шестернями конусные подшипники. Устанавливаются подшипники в паре зеркально. Способ установки зависит от направления нагрузки и крепления в корпусе подшипника и на валу. Угол конуса в конических подшипниках определяется от расчетной нагрузки. Пример: 7208 подшипник роликовый с коническими роликами одинарный ГОСТ 3478-79.
Модификация таких подшипников – ступичные подшипники автомобилей, работающие при ударных нагрузках и больших оборотах. Долголетний опыт эксплуатации автомобилей без замены подшипников говорит о прочности и долговечности ступенчатых подшипников. Пример: подшипник ступицы роликовый конический номер в каталоге производителя 4Т-32309 производитель NTN-SNR устанавливаются на ступицы автомобилей MAN, Iveco, DAF, MMC Truck.
Упорные подшипники
Упорные подшипники устанавливаются при больших нагрузках на ось и небольших оборотах. Выпускаются такие подшипники одно и двух рядные, шариковые или роликовые. Применяются только совместно с другими подшипниками. Пример: 8107 подшипник упорный шариковый ГОСТ 3478-79.
Сферические подшипники
Сферические подшипники устанавливают в механизмах, где невозможно обеспечить точность установки подшипников в подшипниковых опорах. Конструкция подшипников допускает смещение относительно друг друга внутренней и наружной обоймы. Наружная обойма подшипников с внутренней стороны не имеет канавок, а выполнена в форме сферы, которая не препятствует повороту наружной обоймы на небольшой угол. Другое название этих подшипников самоустанавливающиеся подшипники или самоцентрирующиеся подшипники. Пример: 1210 подшипник шариковый сферический двухрядный с цилиндрическим отверстием внутреннего кольца ГОСТ 28428-90.
Термостойкие подшипники
Для отдельных узлов, работающих при постоянной температуре +1000С и выше, выпускают специальные высокотемпературные подшипники, которые имеют зазоры с учетом температурных расширений. Материал для изготовления подшипников работающих в агрессивных средах и высоких температурах выбирается из жаростойких сталей или изготавливают подшипники из нержавеющей стали. При переменной температуре с большим перепадом значений применяются керамические подшипники, у которых нет температурных расширений. Пример: подшипник 32008 X1WC керамический конический роликовый.
Плавающий подшипник
Валы, в насосных установках для перекачки жидкостей с температурой близкой к температуре кипения, увеличиваются в длину за счет температурных расширений. В таких механизмах устанавливают плавающие подшипники. Для этого один подшипник фиксируют в корпусе, а другой подшипник крепят на валу. При увеличении или уменьшении длинны вала подшипник сдвигается на величину температурного расширения вала.
Скоростные подшипники
Скорость вращения это одна из основных характеристик работы подшипника. Существует зависимость, чем подшипник больше, тем меньше допустимые обороты.
Поэтому высокоскоростные подшипники имеют небольшие габариты и устанавливаются в медицинской технике, электротехнике. Миниатюрные подшипники с размерами до 30мм выпускают для приборостроения, робототехники, стоматологического оборудования. Самый маленький подшипник имеет размеры внутренней диаметр обоймы 1 мм и шириной 1,6 мм, номер 1006094 подшипник шариковый радиально упорный однорядный ГОСТ 831-75.
Шпиндельный подшипник
На шпиндели станков для получения точности и чистоты обработки деталей устанавливаются спереди шпиндельные подшипники, которые регулируются за счет конического отверстия внутренней обоймы. Пример: 3182116 подшипник роликовый радиальный с коническим отверстием с бортами на внутреннем кольце ГОСТ 7634-75.
Высокоточные подшипники
Для изготовления инструментов, в точном машиностроении и других областях применяются прецизионные подшипники. К этим подшипникам повышенные требования к допустимой скорости вращения, точности, вибрации, шуму. Они относятся к высокооборотистым подшипникам.
Закрытые подшипники
Где невозможно обеспечить защиту подшипника от грязи и инородных тел применяются подшипники с закрытого типа. Закрытые подшипники выпускают с защитой с одной стороны. Пример 60305 подшипник шариковый радиальный однорядный с защитной шайбой с одной стороны ГОСТ 7242-81.
С двух сторон 80206 подшипник шариковый однорядный радиальный с защитой с двух сторон ГОСТ 7242-81. С сальниковым уплотнением 180207 подшипник шариковый однорядный радиальный с уплотнениями ГОСТ 8882-75. Подшипники, закрытого типа поставляются с заводской смазкой, обеспечивающей долговечность работы подшипника.
Фланцевые подшипники
Фланцевые подшипники (корпусные) встроены в узел механизма. Достоинство такого подшипника в сокращении срока замены, уменьшении простоя, но при этом цена такого подшипника выше. Подшипники с фланцем изготавливаются по типоразмерам и применяются в автомобилестроении. Пример: 480205 подшипник шариковый радиальный однорядный с двумя уплотнениями с широким внутренним кольцом и сферической наружной поверхностью наружного кольца ГОСТ 24850-81 применяется ведущий вал снегохода Тайга.
Подшипники скольжения
Подшипники скольжения применяются в машиностроении, автомобилестроении, при изготовлении узлов гребных винтов на кораблях. Способны выдерживать большие нагрузки при больших оборотах, плавность и точность хода. Обязательное условие эксплуатации наличие смазки. К разновидностям этих подшипников относятся шарнирные подшипники или шаровые подшипники применяются в рулевых тягах автомобилей. Пример: подшипник ШСШ25К подшипник шарнирный подвижный с канавкой для смазки.
Опорные подшипники
В узлах механизмов, с большими статическими и динамическими нагрузками при маленьких оборотах применяются опорные подшипники. Пример опорного подшипника саленблок автомобиля.
Подшипник линейного перемещения
Для линейных перемещений узлов в механизмах, где не возможно применение подшипников качения, к примеру, каретки токарных станков, используются линейные подшипники.
Подшипники качения. Виды, маркировка, выбор подшипников
1. Виды подшипников качения
Подшипники, в которых используется трение качения благодаря установке шариков или роликов между опорными поверхностями оси или вала, получили название – подшипники качения.
Подшипники подразделяют на:
- радиальные , которые воспринимают радиальные нагрузки;
- упорные , которые воспринимают только осевые нагрузки;
- радиально-упорные , которые воспринимают одновременно радиальные и осевые нагрузки.
По сравнению с подшипниками скольжения подшипники качения имеют следующие преимущества:
- малый коэффициент трения;
- большую грузоподъемность при меньшей ширине подшипника;
- незначительный расход смазочных материалов;
- взаимозаменяемость;
- простоту монтажа, ухода и обслуживания.
К недостаткам относятся:
- значительно меньшая долговечность при больших частотах вращения и при больших нагрузках;
- ограниченная способность воспринимать ударные нагрузки;
- большие наружные диаметры по сравнению с подшипниками скольжения.
По форме тел качения (рис. 1) подшипники качения делят на шариковые и роликовые . Ролики могут быть цилиндрические короткие, цилиндрические длинные, витые, игольчатые, бочкообразные и конические. По числу рядов тел качения различают подшипники однорядные , двухрядные и специальные с большим числом рядов.
Рис. 1. Типы подшипников качения: а – шариковый радиальный; б – шариковый радиальный сферический двухрядный; в – роликовый радиальный; г – роликовый радиальный сферический двухрядный; д – роликовый радиальный двухрядный; е – шариковый радиально-упорный; ж – роликовый конический
По способу компенсации перекосов вала подшипники делят на несамоустанавливающиеся и самоустанавливающиеся (со сферической внутренней поверхностью наружного кольца у радиальных подшипников).
По направлению воспринимаемой нагрузки бывают радиальные , радиально-упорные и упорные подшипники.
По радиальным габаритам при одинаковом внутреннем диаметре подшипники делят на следующие серии: сверхлегкие , особолегкие , легкие , средние , тяжелые ; по ширине подшипники различают: узкие , нормальные , широкие и особо широкие .
Маркировка подшипников качения отражает основные параметры и конструктивные особенности подшипников. Обозначения наносят на торец колец подшипников.
Первые две цифры, считая справа налево, означают внутренний диаметр подшипника. Для подшипников с внутренним диаметром от 20 до 495 мм эти две цифры следует умножить на 5, чтобы получить фактический внутренний диаметр в миллиметрах. Для подшипников с диаметром от 20 мм принято следующее обозначение внутреннего диаметра:
- 00 для диаметра 10 мм,
- 01 – 12 мм,
- 02 – 15 мм
- 03 – 17 мм.
Третья цифра справа указывает серию подшипника по диаметральным размерам и ширине. Приняты следующие обозначения:
- 1 – особо легкая серия;
- 2 – легкая серия;
- 3 – средняя серия;
- 4 – тяжелая серия;
- 5 – легкая широкая серия;
- 6 – средняя широкая серия.
Четвертая цифра справа означает тип подшипника. Приняты следующие обозначения типов:
- 0 – радиальный шариковый однорядный;
- 1 – радиальный шариковый двухрядный сферический;
- 2 — радиальный с короткими цилиндрическими роликами;
- 3 – радиальный двухрядный сферический с бочкообразными роликами;
- 4 — радиальный роликовый с длинными цилиндрическими роликами и игольчатый;
- 5 – радиальный с витыми роликами;
- 6 – радиально-упорный шариковый;
- 7 – роликовый конический радиальноупорный;
- 8 – упорный шариковый;
- 9 – упорный роликовый.
Пятая и шестая цифры справа характеризуют конструктивные особенности подшипника.
Седьмая цифра справа означает серию подшипника по ширине.
Совместно с седьмой цифрой справа, используемой для обозначения серии по ширине подшипника, третья цифра определяет размерную серию подшипника по диаметру (см. табл. 1).
Таблица 1. Обозначение серий подшипников
Пример обозначения подшипника
Пример обозначения подшипника
3-я цифра справа
7-я цифра справа
3-я цифра справа
7-я цифра справа
ненормальные внутренние диаметры
Примеры маркировки подшипников:
23 — подшипник шариковый радиальный однорядный (четвертая цифра 0) легкой серии (цифра 2) с внутренним диаметром 3 мм.
203 — подшипник шариковый радиальный однорядный (четвертая цифра 0) легкой серии (третья цифра 2) с внутренним диаметром 17 мм (03).
2230 — подшипник роликовый радиальный с короткими цилиндрическими роликами (четвертая цифра 2) легкой серии (третья цифра 2) с внутренним диаметром 150 (30×5)мм.
3613 — подшипник роликовый сферический двухрядный (четвертая цифра 3) средней широкой (третья цифра 6, седьмая 0) серии с внутренним диаметром 65 (15×5) мм.
60018 — подшипник шариковый радиальный однорядный (четвертая цифра 0) особо-легкой серии (вторая цифра 1) с внутренним диаметром 8 мм, с одной защитной шайбой (пятая цифра 6).
150212 — подшипник шариковый радиальный легкой серии с одной защитной шайбой и со стопорной канавкой на наружном кольце (пятая цифра 5 и шестая — 1).
111217 — подшипник шариковый радиальный сферический двухрядный (четвертая цифра 1) легкой серии (третья цифра 2, седьмая – 0) с коническим отверстием внутреннего кольца (пятая цифра 1 и шестая — 1), d = 85 мм.
67202 — подшипник роликовый конический однорядный (четвертая цифра 7) легкой серии (третья цифра 2) с упорным бортом на наружном кольце (пятая цифра 6). Диаметр внутреннего кольца подшипника 15 мм (первая и вторая цифры 02).
2. Выбор подшипников качения
При выборе типа и размеров шарико- и роликоподшипников необходимо учитывать следующие факторы:
- величину и направление нагрузки (радиальная, осевая, комбинированная);
- характер нагрузки (постоянная, переменная, ударная);
- частоту вращения кольца подшипника;
- необходимую долговечность (желаемый срок службы, выраженный в часах или миллионах оборотов);
- окружающую среду (температуру, влажность, кислотность и т. п.);
- особые требования к подшипнику, предъявляемые конструкцией узла машины или механизма (необходимость самоустанавливаемости подшипника в опоре с целью компенсации перекосов вала или корпуса, обеспечение перемещения вала в осевом направлении и т. п.).
Подшипники выбирают в следующем порядке:
- намечают тип подшипника, исходя из условий эксплуатации и конструкции конкретного подшипникового механизма;
- определяют типоразмер подшипника в зависимости от величины и направления действующих нагрузок, частоты вращения и требуемого срока службы;
- назначают класс точности подшипника с учетом требований к точности вращения механизма.
Исходя из действующих радиальных и осевых нагрузок, вычисляют приведенную нагрузку, которая при приложении к подшипнику при вращении внутреннего кольца и неподвижном наружном кольце обеспечивала бы такую же долговечность, какую достигает подшипник в действительных условиях нагружения и вращения.
По приведенной нагрузке, частоте вращения подшипника и требуемому сроку службы рассчитывают необходимую грузоподъемность, являющуюся основной характеристикой подшипника.
Эту работу по подбору подшипника выполняют в том случае, когда отсутствуют чертежи или руководство по эксплуатации механизма.
При установке подшипников качения в сборочные единицы необходимо создать зазоры, обеспечивающие свободное, без защемления шариков или роликов вращение подшипников. Следует учитывать, что при работе от выделяющегося тепла происходит расширение внутреннего кольца подшипника и сжатие его наружного кольца, в результате чего при слишком плотной посадке шарики или ролики могут защемляться и подшипник быстро износится или разрушится. Чрезмерный зазор в посадочных местах также ухудшает работу подшипника: кольца его начинают проскальзывать, вызывая износ посадочных поверхностей и вибрацию механизма. Принято устанавливать подшипник так, чтобы кольцо подшипника, которое установлено во вращающейся детали (шкив с наружным кольцом подшипника или шип вала с внутренним кольцом), было установлено по неподвижной посадке (с небольшим натягом), а противоположное кольцо должно иметь возможность самоустанавливаться по неподвижно закрепленному кольцу и должно быть установлено по переходной или скользящей посадке.