Основные физические и механические свойства металлов
Автомобильный справочник
для настоящих автомобилистов
Свойства металлов
Металлы, это группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск. В данной статье все свойства металлов будут представлены в виде отдельных таблиц.
Свойства металлов
Свойства металлов делятся на физические, химические, механические и технологические.
Физические свойства металлов
К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, теплоемкость, расширяемость при нагревании.
Удельный вес металла — это отношение веса однородного тела из металла к объему металла, т.е. это плотность в кг/м 3 или г/см 3 .
Плавкость металла — это способность металла расплавляться при определенной температуре, называемой температурой плавления.
Электропроводность металлов — это способность металлов проводить электрический ток, это свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля. Под электропроводностью подразумевается способность проводить прежде всего постоянный ток (под воздействием постоянного поля), в отличие от способности диэлектриков откликаться на переменное электрическое поле колебаниями связанных зарядов (переменной поляризацией), создающими переменный ток.
Магнитные свойства металлов характеризуются: остаточной индукцией, коэрцетивной силой и магнитной проницаемостью.
Теплопроводность металлов — это их способность передавать тепло от более нагретых частиц к менее нагретым. Теплопроводность металла определяется количеством теплоты, которое проходит по металлическому стержню сечением в 1см 2 , длиной 1см в течение 1сек. при разности температур в 1°С.
Теплоемкость металлов — это количество теплоты, поглощаемой телом при нагревании на 1 градус. Отношение количества теплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому изменению единицы массы вещества (г, кг) называется удельной теплоёмкостью, 1 моля вещества — мольной (молярной).
Расширяемость металлов при нагревании.Все металлы при нагревании расширяются, а при охлаждении сжимаются. Степень увеличения или уменьшения первоначального размера металла при изменении температуры на один градус характеризуется коэффициентом линейного расширения.
Химические свойства металлов
К химическим — окисляемость, растворимость и коррозионная стойкость.
Механические свойства металлов
К механическим — прочность, твердость, упругость, вязкость, пластичность.
Прочностью металла называется его способность сопротивляться действию внешних сил, не разрушаясь.
Твердостью металлов называется способность тела противостоять проникновению в него другого, более твердого тела.
Упругость металлов — свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших изменение формы (деформацию).
Вязкость металлов — это способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость — свойство обратное хрупкости.
Пластичность металлов — это свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность—свойство обратное упругости.
Технологические свойства металлов
К технологическим — прокаливаемость, жидкотекучесть, ковкость, свариваемость, обрабатываемость резанием.
Прокаливаемость металлов – это их способность получать закаленный слой определенной глубины.
Жидкотекучесть металлов — это свойство металла в жидком состоянии заполнять литейную форму и воспроизводить ее очертания в отливке.
Ковкость металлов —это технологическое свойство, характеризующее их способность к обработке деформированием, например, ковкой, вальцеванием, штамповкой без разрушения.
Свариваемость металлов — это их свойство образовывать в процессе сварки неразъемное соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией производимого изделия.
Обрабатываемость металлов резанием — это их способность изменять геометрическую форму, размеры, качество поверхности за счет механического срезания материала заготовки режущим инструментом. Обрабатываемость металлов зависит от их механических свойств, в первую очередь прочности и твердости.
Современными методами испытания металлов являются механические испытания, химический анализ, спектральный анализ, металлографический и рентгенографический анализы, технологические пробы, дефектоскопия. Эти испытания дают возможность получить представление о природе металлов, их строении, составе и свойствах, а также определить качество готовых изделий.
Таблицы свойств металлов
Таблица «Свойства металлов: Чугун, Литая сталь, Сталь»
- Предел прочности на растяжение
- Предел текучести (или Rp 0,2);
- Относительное удлинение образца при разрыве;
- Предел прочности на изгиб;
- Предел прочности на изгиб приведен для образца из литой стали;
- Предел усталости всех типов чугуна, зависит массы и сечения образца;
- Модуль упругости;
- Для серого чугуна модуль упругости уменьшается с увеличением напряжения растяжения и остается практически постоянным с увеличением напряжения сжатия.
Таблица «Свойства пружинной стали»
- Предел прочности на растяжение,
- Относительное уменьшение поперечного сечения образца при разрыве,
- Предел прочности на изгиб;
- Предел прочности при знакопеременном циклическом нагружении при N ⩾ 10 7 ,
- Максимальное напряжение при температуре 30°С и относительном удлинении 1 2% в течение 10 ч; для более высоких температур см. раздел «Способы соединения деталей»,
- см. раздел «Способы соединения деталей»;
- 480 Н/мм 2 для нагартованных пружин;
- Приблизительно на 40% больше для нагартованных пружин
Таблица «Свойства кузовных тонколистовых металлов»
Таблица «Свойства цветных металлов»
- Модуль упругости, справочные данные;
- Предел прочности на растяжение;
- Предел текучести, соответствующий пластической деформации 0,2%;
- Предел прочности на изгиб;
- Наибольшая величина;
- Для отдельных образцов
Таблица «Свойства легких сплавов»
- Предел прочности на растяжение;
- Предел текучести, соответствующий пластической деформации 0,2%;
- Предел прочности на изгиб;
- Наибольшая величина;
- Показатели прочности приведены для образцов и для отливок;
- Показатели предела прочности на изгиб приведены для случая плоского нагружения
Таблица «Металлокерамические материалы (PM) 1) для подшипников скольжения»
- В соответствии со стандартом DIN 30 910,1990 г. издания;
- Применительно к подшипнику 10/16 г 10;
- Углерод содержится, главным образом, в виде свободного графита;
- Углерод содержится только в виде свободного графита
Таблица «Свойства металлокерамических материалов (РМ) 1 для конструкционных деталей»
- В соответствии со стандартом DIN 30 910,1990 г. издания;
Магнитные материалы
Таблица «Свойства магнитомягких материалов»
- Данные относятся только к магнитным кольцам.
Магнитомягкие металлы
Таблица «Свойства магнитной листовой и полосовой стали»
Материалы для преобразователей и электрических реакторов
Магнитная проницаемость листового сердечника для классов сплавов С21, С22, Е11, Е31 и Е41 для секции тонколистового сердечника EY11
Материалы для реле постоянного тока
Таблица «Свойства материалов для реле постоянного тока»
Металлокерамические материалы для магнитомягких компонентов
Таблица «Свойства металлокерамических материалов для магнитомягких компонентов»
Магнитомягкие ферриты
Таблица «Свойства магнитомягких ферритов»
- Нормируемые величины;
- Потеря материалом магнитных свойств в зависимости от частоты при низкой плотности магнитного потока (В Эта статья размещена в главе Материалы в автомобилестроении и называется Свойства металлов. Добавьте в закладки ссылку.
ФИЗИЧЕСКИЕ, ХИМИЧЕСКИЕ И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ;
Сайт СТУДОПЕДИЯ проводит ОПРОС! Прими участие 🙂 — нам важно ваше мнение.
СВОЙСТВА МЕТАЛЛОВ И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ
Одним из основных факторов, обеспечивающих выпуск надежной и качественной продукции машиностроительных предприятий, является правильный выбор металлов для различных изделий и конструкций. Для этого надо хорошо знать условия работы деталей и конструкций и свойства предназначаемых, для них металлов.
Свойства металлов и сплавов делятся на несколько групп: физические, механические, химические, технологические, специальные.
Физические свойства металлов. Плотность (кг/м 3 ) — отношение массы металла к его объему. Металлы с малой плотностью применяют при изготовлении легких конструкций, например сплавы магния и алюминия в самолетостроении.
Температура плавления (°С) — температура, при которой металл переходит в жидкое состояние. Легкоплавкие сплавы — алюминий с Тпл 660°С, олово с Тпл 232°С, тугоплавкие — вольфрам с Тпл 3416°С, железо с Тпл 1539°С.
Тепловое расширение — равномерное увеличение объема (длины) тела при нагревании. Характеризуется коэффициентом расширения α (град -1 ). Этот коэффициент показывает относительное изменение линейных размеров тела при изменении температуры на один градус.
Обычно определяют средний коэффициент линейного расширения ее, характеризующий тепловое расширение в широком интервале температур: от 0° или 20°С до заданной.
Коэффициент объемного расширения в три раза больше коэффициента линейного расширения.
Тепловое расширение при выборе металлов учитывают для конструкций, работающих при переменных и повышенных температурах.
Коэффициент линейного расширения углеродистой стали при 20°С составляет 12 ×10 -6 , вольфрама — 4,3×10 -6 дуралюмина — 22×10 -6 град -1 .
Теплопроводность [Вт/(м×К)] — способность передавать теплоту от нагретых зон более холодным.
Коэффициент теплопроводности λ показывает, какое количество теплоты может пройти перпендикулярно площади 1 м 2 на расстояние 1 м при разности температур 1К на противоположных сторонах куба.
Теплопроводность учитывается при конструировании узлов, в которых металл не должен перегреваться. Коэффициент теплопроводности стали 45,4, алюминия 209,3, серебра 418,7 Вт/(м×К).
Электропроводность — способность металла проводить электрический ток.
С повышением температуры электропроводность уменьшается, с понижением — повышается. Электропроводность учитывается при выборе материала для изготовления электрических проводов и различных датчиков.
Удельное электросопротивление алюминия 2,69×10 -6 , вольфрама — 5,5×10 -6 , меди — 1,67 ×10 -6 Ом/см при 20°С.
Магнитные свойства характеризуются магнитной восприимчивостью — способностью вещества намагничиваться в магнитном поле. Хорошо намагничивающиеся вещества называют ферромагнетиками. Это железо, никель, кобальт и ряд сплавов. Их применяют в электротехнике и приборостроении.
Химические свойства металлов. К этим свойствам относят способность металлов вступать в реакцию с рабочей средой. Распространенным явлением является коррозия — разрушение металлов вследствие химического и электрохимического взаимодействия их с внешней средой. Из-за коррозии ежегодно теряется
1,5% всего эксплуатируемого металла. Поэтому применяют специальные методы защиты металлов от коррозии, а также коррозионно-стойкие в различных средах сплавы.
Технологические свойства металлов. Пригодность металла для изготовления различных конструкций и деталей не всегда можно оценить по физическим и механическим свойствам. Для более точной оценки качества металла проводят определение его технологических свойств. К ним относятся литейные свойства, свариваемость, способность обрабатываться давлением и резанием. Определение технологических свойств проводится с помощью специальных проб. Ниже рассматриваются некоторые из них. Известно, что сталь одной марки, но разных плавок может иметь различную пластичность. Для выбора способа горячей обработки давлением необходима предварительная оценка пластичности.
Определение ковкости проводят на пробах массой до 1 кг, отлитых по ходу плавки или разливки. Процесс определения ковкости заключается в том, что пробы в форме стаканчика проковывают на квадратный стержень сечением 15×15 мм. Затем стержень загибают молотком на 180° до соприкосновения сторон.
Ковкость считается хорошей при отсутствии на пробе надрывов, трещин и других дефектов, Ковкость считается удовлетворительной при появлении на наружных гранях пробы незначительных надрывов. Считают, что при разрушении пробы или появлении больших надрывов и трещин сталь непригодна для горячей обработки давлением.
Проба на свариваемость служит для определения способности стали принимать заданный по размерам и форме загиб по месту сварки.
Испытание заключается в загибе сваренного образца в месте сварки по одному из следующих вариантов: загиб до определенного угла, загиб вокруг оправки до параллельности сторон; загиб до соприкосновения сторон образца. Сталь считают выдержавшей пробу при отсутствии в образце после загиба трещин, надрывов, расслоений или излома. Такая сталь, имеющая сварные швы, может подвергаться пластической деформации.
Листовая сталь испытывается на загиб по такой же схеме, но без разрезки и сварки образца. Сохранение сплошности после испытания считается признаком того, что образец выдержал пробу.
Существует ряд других технологических проб, применяемых в различных производствах.
Физические, химические, механические и технологические свойства металлов
Чтобы правильно выбрать материал для определённых целей, необходимо знать свойства металлов. Так, например, для изготовления режущих инструментов требуются прочные, твердые и износоустойчивые металлические материалы.
Физические свойства металлов и сплавов определяются цветом, удельным весом, плотностью, температурой плавления, тепловым расширением, тепло- и электропроводностью, а также магнитными свойствами.
Физические свойства металлов характеризуются определенными числовыми значениями, которые приведены в таблице 1.
Физические свойства некоторых металлов
Отношение массы тела к его объему является постоянной величиной для данного вещества и называется плотностью.
Плотность и удельный вес имеют большое значение при выборе металлических материалов для изготовления различных изделий. Так, детали и конструкции в приборостроении, в авиа- и вагоностроении наряду с высокой прочностью должны обладать малой плотностью. Из металлов, наиболее широко применяемых в технике, наименьшую плотность имеют магний и алюминий.
Все металлы как тела кристаллического строения переходят при определенной температуре из твердого состояния в жидкое и наоборот. Температура, при которой металл переходит из твердого состояния в жидкое, называется температурой плавления.
Температура плавления является важным физическим свойством металлов. Знание температуры плавления металлов и сплавов необходимо в металлургии, в литейном производстве, при горячей обработке металлов давлением, при сварке, пайке и других процессах, сопровождающихся нагреванием металлических материалов.
Способность металлов передавать теплоту от более нагретых частей тела к менее нагретым называется теплопроводностью.
Среди металлических материалов лучшей теплопроводностью обладают серебро, медь, алюминий. Эти же металлы являются и лучшими проводниками электрического тока.
Теплопроводность металлов имеет большое практическое значение. Из металлов и сплавов, обладающих высокой теплопроводностью, изготовляют детали машин, которые при работе поглощают или отдают теплоту.
Металлы и сплавы с низкой теплопроводностью для полного прогрева нуждаются в медленном и длительном нагревании. Быстрый нагрев и быстрое охлаждение таких металлических материалов может вызвать образование трещин. Это необходимо учитывать при термической обработке, горячей обработке давлением, литье в металлические формы и т. д.
Различные вещества, в том числе и металлы, при нагревании расширяются, при охлаждении — сжимаются. Неодинаковость величины теплового линейного расширения материалов характеризуется коэффициентом линейного расширения α, который показывает, на какую долю первоначальной длины l при 0 °С удлинилось тело вследствие нагревания его на 1°С. Единица измерения α — °С -1 .
Тепловое расширение металлов необходимо учитывать при изготовлении и эксплуатации точных измерительных приборов и инструментов, изготовлении литейных форм, горячей обработке металлов давлением и в других случаях, связанных с нагреванием и охлаждением.
Детали точных приборов и измерительных инструментов изготавливаются из материалов с малым коэффициентом линейного расширения, детали автоматически действующих механизмов, которые, удлиняясь, должны замыкать электрическую цепь, делают из материалов с большим коэффициентом линейного расширения.
Электропроводностью называется способность металлов проводить электрический ток.
Высокой электропроводностью обладают те металлы, которые хорошо, т. е. без потерь на тепло, проводят электрический ток.
Магнитные свойства . Некоторые металлы намагничиваются под действием магнитного поля. После удаления магнитного поля они обладают остаточным магнетизмом. Это явление впервые обнаружено на железе и получило название ферромагнетизма. Сильно выраженными магнитными свойствами обладают железо, никель, кобальт и их сплавы. Перечисленные выше металлические материалы называют ферромагнитными . У остальных металлов и сплавов магнитные свойства выражены крайне слабо, поэтому практически они считаются немагнитными.
Магнитные превращения не связаны с изменением кристаллической решетки или микроструктуры, они обусловлены изменениями в характере межэлектронного взаимодействия.
Магнитной проницаемостью называют способность металлов намагничиваться под действием магнитного поля.
При нагреве ферромагнитные свойства металла уменьшаются постепенно: вначале слабо, затем резко, и при определённой температуре (точка Кюри) исчезают (точка Кюри для железа — 768°С, у никеля — 360° С, у кобальта — 1130° С.). Выше этой температуры металлы становятся парамагнетиками (слабомагнитными материалами).
К химическим свойствам металлов следует отнести их способность сопротивляться химическому или электрохимическому воздействию различных сред (коррозии) при нормальных и высоких температурах.
Рассмотренные выше физические свойства металлов обнаруживаются в явлениях, не сопровождающихся изменением вещества. Так, например, нагрев металлов или прохождение через металлы электрического тока не сопровождается химическими изменениями их. При химических же явлениях происходит превращение металлов в другие вещества с иными свойствами.
Многие металлы подвергаются химическому изменению под воздействием внешней среды, т. е. разрушаются от коррозии. Мерой коррозионной стойкости служит скорость распространения коррозии металлов в данной среде и в данных условиях: чем эта скорость меньше, тем металл более коррозионностоек.
Высокой коррозионной стойкостью в атмосфере и в агрессивных средах обладают никель, титан и их сплавы. Титан и его сплавы по коррозионной стойкости приближаются к благородным металлам.
Прочность — это способность материала сопротивляться действию внешних сил без разрушения.
Упругость — это способность материала восстанавливать свою первоначальную форму и размеры после прекращения действия внешних сил, вызвавших деформацию.
Пластичность — это способность материала изменять свою форму и размеры под действием внешних сил, не разрушаясь, и сохранять полученные деформации после прекращения действия внешних сил.
Механическими свойствами металлов называется совокупность свойств, характеризующих способность металлических материалов сопротивляться воздействию внешних усилий (нагрузок).
К механическим свойствам металлических материалов относятся: прочность, твердость, пластичность, упругость, вязкость, хрупкость, усталость, ползучесть и износостойкость.
Твердость — способность металла оказывать сопротивление проникновению в него другого, более твердого тела.
Прочность — способность металла сопротивляться разрушению под действием внешних сил.
Для определения прочности образец металла установленной формы и размера испытывают на наибольшее разрушающее напряжение при растяжении, которое называют пределом прочности (временное сопротивление).
Пластичность — способность металла, не разрушаясь, изменять форму под нагрузкой и сохранять ее после прекращения действия нагрузки.
Вязкость – способность металла оказывать сопротивление быстровозрастающим (ударным) нагрузкам.
Технологические свойства металлов и сплавов характеризуют их способность поддаваться различным методам горячей и холодной обработки. К технологическим свойствам металлов и сплавов относятся литейные свойства, ковкость, свариваемость, обрабатываемость режущими инструментами, прокаливаемость.
Обрабатываемость металлов характеризуется их механическими свойствами: твердостью, прочностью, пластичностью.
Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.
Износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения.
Коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.
Жаростойкость – это способность материала сопротивляться окислению в газовой среде при высокой температуре.
Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.
Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах. Хладоломкостью называется склонность металла к переходу в хрупкое состояние с понижением температуры. Хладоломкими являются железо, вольфрам, цинк и другие металлы, имеющие объемноцентрированную кубическую и гексагональную плотноупакованную кристаллическую решетку.
Красноломкасть — склонность металла к переходу в хрупкое состояние с повышением температуры.
При выборе материала для создания конструкции необходимо полностью учитывать механические, технологические и эксплуатационные свойства.
Дата добавления: 2018-02-28 ; просмотров: 2426 ;
Характеристики основных механических свойств металлов и сплавов и способы их определения
Любое вещество, будь то газ, жидкость или твердое тело, обладает рядом специфических, только ему присущих свойств. Однако эти свойства позволяют не только индивидуализировать элементы, но и объединять их в группы по принципу схожести.
Посмотрите на металлы: с обывательской точки зрения это блестящие элементы, с высокой электро- и теплопроводностью, не восприимчивые к внешним физическим воздействиям, ковкие и легко свариваемые при высоких температурах. Достаточен ли этот перечень. чтобы объединить металлы в одну группу? Конечно же нет, металлы и их производные (сплавы) гораздо сложнее и обладают целым набором химических, физических, механических и технологических свойств. Сегодня мы поговорим лишь об одной группе: механических свойствах металлов.
Основные механические свойства металлов
Что это за свойства? Под механическими понимают такие свойства субстанции, которые отражают ее умение противостоять действиям извне. Известно девять основных механических свойств металлов:
— Прочность — означает, что приложение статической, динамической или знакопеременной нагрузки не приводит к нарушению внешней и внутренней целостности материала, изменению его строения, формы и размеров.
— Твердость (часто путают с прочностью) — характеризует возможность одного материала противостоять прониканию другого, более твердого предмета.
— Упругость — означает способность к деформированию без нарушения целостности под действием определенных сил и возвращению первоначальной формы после освобождения от нагрузки.
— Пластичность (часто путают с упругостью и наоборот) — также способность к деформации без нарушения целостности, однако в отличие от упругости, пластичность означает, что объект способен сохранить полученную форму.
— Стойкость к трещинам — под воздействием внешних сил (ударов, натяжений и пр.) материал не образует трещин и сохраняет наружную целостность.
— Вязкость или ударная вязкость — антоним ломкости, то есть возможность сохранять целостность материала при возрастающих физических воздействиях.
— Износостойкость — способность к сохранению внутренней и внешней целостности при длительном трении.
— Жаростойкость — длительная возможность противостоять изменению формы, размера и разрушению при воздействии больших температур.
— Усталость — время и количество циклических воздействий, которые материал может выдержать без нарушения целостности.
Часто, говоряо тех или иных свойствах, мы путаем их названия: технологические свойства относим к физическим, физические к механическим и наоборот. И это неудивительно, ведь несмотря на глубинные отличия, лежащие в основе той или иной группы свойств, механические свойства не только крайне тесно связаны с другими характеристиками металлов, но и напрямую зависят от них.
Физические свойства металлов
Наиболее взаимозависимы между собой механические и химические свойства металлов, ведь именно химический состав металла или сплава, его внутреннее строение (особенности кристаллической решетки) диктуют все остальные его параметры. Если говорить о механических и физических свойствах металлов, то их чаще других путают между собой, что обусловлено близостью данных определений.
Физические свойства часто неотделимы от механических. К примеру, тугоплавкие металлы еще и самые прочные. Главное же отличие лежит в природе свойств. Физические свойства — те что проявляется в покое, механические — только под воздействием извне. Не хуже других связаны механические и технологические свойства металлов. Например, механическое свойство металла «прочность» может быть результатом его грамотной технологической обработки (с этой целью нередко используют «закалку» и «старение»). Обратная взаимосвязь не менее важна, к примеру, ковкость проявление хорошей ударной вязкости.
Делая вывод, можно сказать, что зная некоторые химические, физические или технологические свойства можно предугадать, как будет вести себя металл под воздействием нагрузки (т.е. механически), и наоборот.
В чем отличия механических свойств металлов и сплавов?
Различаются ли механические свойства металлов и сплавов? Безусловно. Ведь любой металлический сплав изначально создается с целью получения каких-либо конкретных свойств. Некоторые сочетания легирующих элементов и основного металла в сплаве способны мгновенно преобразить легируемый элемент. Так алюминий ( не самый прочный и твердый металл в мире) в сочетании с цинком и магнием образует сплав по прочности сравнимый со сталью. Все это дает практически неограниченные возможности в получении веществ наиболее близких к требуемым.
Отдельное внимание следует уделить механическим свойствам наплавленных металлов. Наплавленным считается металл, с помощью которого производилась сварка двух или более частей какого-то металлического элемента или конструкции. Этот металл словно нитки соединяет разорванные части. От того, как будет вести себя «шов» под нагрузкой, будет зависеть безопасность и надежность всей конструкции. Исходя из этого, крайне важно, чтобы свойства наплавленного металла были не хуже, чем у главного металла.
Как определить механические свойства?
Экспериментальным путем. Среди основных методов определения механических свойств металлов можно выделить:
— испытания на растяжение;
— метод вдавливания по Бринеллю;
— определение твердости металла по Роквеллу;
— оценка твердости по Виккерсу;
— определение вязкости с помощью маятникового копра;
Механические свойства имеют весьма серьезное значение. Их знание позволяет использовать металлы и их сплавы с наибольшей эффективностью и отдачей.