Как укладывается обмотка асинхронного двигателя
Обмотка статора электродвигателя
обмотке якоря машины постоянного тока число витков секции стремятся сделать по возможности небольшим. Причина этого в том, что секция якоря при коммутации размыкается и замыкается и в ней возбуждается нежелательная э. д. с. самоиндукции, тем больше, чем больше число витков.
Статор асинхронного двигателя не имеет коллектора, размыканий секций при работе не происходит и их число витков можно брать значительным, что особенно важно для получения большой э. д. с. обмотки.
На рис. 10-9 показана секция обмотки статора, имеющая четыре витка. Однако, если число витков секций велико, то паз получается большим, а поверхность сердеч ника б лагодаря этому число пазов увеличивается, величина паза уменьшается, а сталь сердечника используется лучше.
Рис. 10-9. Секция обмотки статора.
Все провода секций изолируются вместе и в дальнейшем секция будет изображаться одновитковой, независимо от числа ее витков (рис.10-11).
При постоянной, частоте тока, проходящего в обмотке, скорость вращения магнитного потока зависит только от того числа пар полюсов, на которое построена обмотка статора.
Рис. 11-10. Соединение двух секций обмотки статора.
Так, при f = 50 гц и при р — 1,2, 3, 4 и т. д. скорости вращения потока будут соответственно п 1 = 3 000, 1 500, 1 000, 750 об/мин и т. д. Кроме того, при заданном р на каждый полюс от каждой фазы должно, очевидно, приходиться некоторое число пазов. Тогда все число пазов статора должно быть равно:
где 2 р — число полюсов или полюсных делений (полюсное деление — расстояние между серединами двух разноименных, рядом лежащих полюсов всегда равное 180 эл. град);
Рис. 10-11. Обозначение секций.
m — число фаз обмотки;
q — число пазов на полюс и фазу, т. е. число пазов, занятых каждой фазой на каждом полюсном делении.
Пусть 2p = 2, т — 3, q = 2. Число пазов статора согласно формуле (10-2) получается 12. В каждом пазу находятся две активные стороны секции и, следовательно, число секций тоже 12. Так как обмотка трехфазная, то каждая фаза состоит из четырех секций, образующих две катушки, имеющие каждая по две секции, соединенные последовательно (рис. 10-11). Обмотка, как обычно принято, изображена на рис. 10-12 в развернутом виде, так как дисковое изображение (рис. 10-8), даже для простейших схем, чертить затруднительно.
На развертке окружности (рис. 10-12) показаны зоны двух полюсных делений т. На каждом полюсном делении каждая фаза занимает два паза, т. е. q — 2, поэтому легко разметить пазы, принадлежащие отдельным фазам. Если произвольно принять, что пазы 1, 2 принадлежат фазе A, то следующие два паза этой же фазы могут быть только на втором полюсном делении, т. е. сдвинуты на 180 эл. град. Это будут пазы 7, 8. Разметка делается по верхнему слою активных сторон секций.
Рис. 10-12. Развертка двухслойной обмотки
Так как э. д. с. секций 1, 2 и 7, 8, соединенных в катушки, должны складываться, то соединение сделано так, как показано на рис. 10-10 и 10-11. Теперь эти две катушки должны быть соединены в обмотку фазы А. Однако катушки размещены на разных полюсных делениях, и, следовательно, их э. д. с. сдвинуты по фазе на 180°. Таким образом, чтобы получить э. д. с. фазы
надо конец катушки 7—2 соединить с концом катушки 7—8, что и сделано на рис. 10-12. Если принять за начало фазы А провод, выходящий из паза 1, то конец фазы X будет выходить из паза 7.
Начало фазы В будет в пазу 5, т. е. сдвинутым относительно начала фазы А на 2 /3 , или 120 эл. град. Фазе BY принадлежат пазы 5, 6 и 11—12. Начало фазы С располагается в пазу 9, т. е. со сдвигом еще на 2/3 т. Фазе CZ принадлежат пазы 9, 10 и 3, 4. Соединения второй и третьей фаз на рис. 10-12 не показаны, а размечены только начала В, С и концы Y, Z. Для присоединения к питающей сети обмотки статора соединяются, как и у трансформатора, в звезду или в треугольник.
Статья на тему Обмотка статора электродвигателя
Обмотки статора асинхронного двигателя
Если взглянуть на обмотку статора асинхронного электродвигателя, то легко обнаружить, что она представляет собой отнюдь не просто три уложенные под 120 градусов относительно друг друга одиночные катушки. На каждую из фаз трехфазной обмотки приходится обычно по несколько секций. Эти секции отдаленно напоминают секции обмотки ротора коллекторного мотора, однако в асинхронном двигателе они выполняют совершенно иные функции.
Посмотрите на первый рисунок. Здесь изображена одна секция, состоящая из четырех витков. Такая секция занимает на статоре минимум два паза. Но секцию в принципе можно разбить еще напополам — вот уже четыре паза. Тогда две части секции необходимо будет соединить последовательно, чтобы ЭДС в них суммировались.
Поскольку весь набор изолированных друг от друга проводов в секции (или условно — в части секции) укладывается в один паз, то и обозначить на схеме пучок проводов можно в виде одного витка, даже если витков в одном пазе лежит несколько. Активные проводники каждой секции могут укладываться в пазы одним слоем или двумя слоями, как на роторе коллекторного мотора.
Допустим, трехфазный асинхронный двигатель имеет одну пару полюсов (2p=2). Тогда для каждой фазы обмотки на каждый полюс будет приходиться некоторое количество пазов статора: как правило от 1 до 5 (q). В процессе проектирования машины выбирают наиболее подходящее значение этого числа q. В результате общее число пазов будет равно — число полюсов*число фаз*пазов на полюс фазы (Z = 2pmq).
К примеру имеется: одна пара полюсов, три фазы, два паза на полюс фазы. Итак, общее число пазов: Z = 2*3*2 = 12 пазов. На рисунке ниже приведена именно такая обмотка, где на каждую фазу приходится по 4 секции, причем каждая секция состоит из двух частей (по две катушки в части) — каждая часть находится в сфере действия своего полюса (в двух полюсных делениях тау, одно полюсное деление — 180 градусов, все пазы — 360 градусов).
Пазы разделяются по фазам так: пусть у двигателя два паза на полюс на фазу, тогда на первом полюсном делении для фазы А предполагаются пазы 1 и 2, а на втором полюсном делении — 7 и 8, поскольку Z/2 = 6, и тау = 6 зубцов.
Вторая фаза (В) сдвинута относительно первой в пространстве на 120 градусов или на 2/3 тау, то есть на 4 зубца, и значит занимает пазы 5 и 6 на первом полюсном делении и пазы 11 и 12 — на втором полюсном делении.
И наконец третья фаза (С) располагается в оставшихся пазах 8 и 9 второго полюсного деления и в пазах 3 и 4 первого полюсного деления. Разметка обмотки всегда ведется по наружному слою активных проводников.
Как вы уже поняли, с целью сложения ЭДС каждой фазы, секции внутри катушек соединяют последовательно, а сами катушки (в противоположных полюсных делениях) — встречно: конец первой — с концом второй.
К трехфазной сети обмотки статора традиционно присоединяются по одной из двух схем: звезда или треугольник. Треугольник — для 220 вольт, звезда — для 380 вольт.
На рисунке показан статор без обмотки. Статор устанавливается в алюминиевый, чугунный или стальной корпус двигателя путем запрессовывания сердечника вовнутрь. Сердечник здесь набирается из отдельных листов стали, каждый из которых изолирован особым электротехническим лаком.
Снаружи корпус имеет ребра, благодаря которым увеличивается площадь теплообмена с окружающим воздухом и повышается эффективность активного охлаждения — пластмассовый вентилятор, насаженный на ротор сзади (под задней крышкой с перфорацией), обдувает ребра и охлаждает таким образом двигатель в процессе его работы, так предохраняет обмотки от перегрева.
Обмотка электродвигателей. Применяемые материалы и инструменты
Подписка на рассылку
Электродвигатель, как один из самых подверженных тяжелым нагрузкам агрегатов, очень часто выходит из строя. Основная причина поломок — скачки напряжения и перегрев, вследствие чего в обмотке нарушается изоляция, происходит замыкание и медные провода попросту плавятся. Выбрасывать двигатель — не всегда правильное решение, ведь можно обойтись его капитальным ремонтом, что, конечно же, в большинстве случаев дешевле, нежели покупка нового агрегата.
Обмотка электродвигателей — процесс достаточно трудоемкий, который требует от обмотчика-ремонтника не только усидчивости, но и немалого опыта. С какими же материалами и инструментами работает специалист? Ответим на этот вопрос.
Если взглянуть на обмоточные данные электродвигателей, то можно заметить, что в этих таблицах речь идет в основном о характеристиках используемых при обмотке медных и алюминиевых проводов. Именно они и являются основным расходным материалом. Каждый отдельный случай требует использования обмоточных проводов с определенными техническими характеристиками — марка, сечение, тип изоляции и т. д. (таблицы с обмоточными данными электродвигателей содержат всю необходимую информацию по выбору проводов).
Второй по важности расходный материал — изоляция, укладываемая в пазы сердечников между катушками (в простейшем случае — между первичной и вторичной), на выходе проводов из двигателя, для группировки проводов и в других случаях. Изоляция также имеет свои характеристики: рабочая температура, максимальное напряжение и сила тока, толщина и т. д. Примеры изоляционных материалов: стеклоленты, электрокартон, фторопластовая пленка и прочее. К примеру, согласно обмоточным данным однофазных электродвигателей с изоляцией E-класса используется лавсан.
После успешной обмотки электродвигателя приходит очередь пропитки его проводов специальными пропиточными жидкостями. Необходимы они для фиксации проводов и изоляции. В качестве таких материалов используются различные лаки, битумные и полиэфирные компаунды и прочие вещества, также отличные по техническим параметрам.
Основной рабочий инструмент обмотчика — кантователь. Это механизированный станок, предназначенный для намотки проводов на статоры различных типов двигателей.
После обработки агрегата пропиточными материалами его необходимо высушить для того, чтобы жидкость затвердела. Для этих целей используются сушильные шкафы (для наружной сушки терморадиационным способом), специальное оборудование, которое подает на обмотку ток, нагревающий провода и, как следствие, высушивающий пропиточный материал.
Несмотря на все совершенство современного оборудования, процесс обмотки электродвигателей очень редко проводится без использования ручных инструментов, особенно в случае ремонта агрегатов. В арсенале любого обмотчика-ремонтника всегда должны присутствовать (см. рис.):
- фибровые пластинки;
- фибровые язычки;
- обратные клинья;
- угловые ножи;
- выколотки;
- топорики;
- наборы ключей для гибки стержней ротора (на рисунке показан только один образец).
В арсенале обмотчика могут присутствовать и другие вспомогательные инструменты, включая традиционные — пассатижи, бокорезы, пинцеты и т. д.
Пошаговая инструкция перемотки электродвигателей своими руками
Во многих бытовых устройствах и самодельных конструкциях в качестве привода используются электрические машины небольшой мощности. Несмотря на высокую надежность электромоторов, их выход из строя по ряду причин — не редкость. Учитывая относительно высокую стоимость этих устройств, практичнее осуществлять их ремонт, а не замену. Предлагаем рассмотреть возможность перемотки электродвигателей в домашних условиях.
Виды электродвигателей и особенности их ремонта
Как правило, в быту используются коллекторные моторы постоянного тока и бесколлекторные асинхронные двигатели переменного тока. Именно ремонт этих приводов мы и будем рассматривать. Информацию о принципе действия и конструктивных особенностях асинхронных и коллекторных машин можно найти на нашем сайте.
Что касается синхронных приводов, то в быту они практически не используются, поэтому в данной публикации эта тема не затрагивается.
Особенности ремонта асинхронной машины
Проблемы с двигателем любого типа могут иметь механический или электрический характер. В первом случае свидетельствовать о неисправности может сильная вибрация и характерный шум, как правило, это говорит о проблемах с подшипником (обычно в торцевой крышке). Если вовремя не устранить неисправность, вал может заклинить, что неминуемо приведет к выходу из строя обмоток статора. При этом тепловая защита автоматического выключателя может не успеть сработать.
«Сгоревшие» провода обмотки статора
Исходя из практики, в 90% выход из строя асинхронных машин возникают проблемы с обмоткой статора (обрыв, межвитковое замыкание, КЗ на корпус). При этом короткозамкнутый якорь, как правило, остается в рабочем состоянии. Поэтому даже при механическом характере повреждений необходимо произвести проверку электрической части.
Проверка обмотки
В большинстве случаев проблема может быть обнаружена по внешнему виду и характерному запаху (см. рис. 1). Если эмпирическим путем неисправность установить не удается, переходим к диагностике, которая начинается с прозвонки на обрыв. Если таковая обнаруживается, выполняется разборка двигателя (этот процесс будет описан отдельно) и тщательный осмотр соединений. Когда дефект не обнаружен, можно констатировать обрыв в одной из катушек, что требует перемотки.
Если прозвонка не показала обрыва, следует переходить к измерению сопротивления обмоток, при этом учитывать следующие нюансы:
- сопротивление изоляции катушек на корпус должно стремиться к бесконечности;
- у трехфазного привода обмотки должны показывать одинаковое сопротивление;
- у однофазных машин сопротивление пусковых катушек превышает данные показания рабочих обмоток.
Помимо этого следует учитывать, что сопротивление статорных катушек довольно низкое, поэтому для его измерения бессмысленно использовать приборы с низким классом точности, к таковым относятся большинство мультиметров. Исправить ситуацию можно собрав несложную схему на потенциометре с добавлением дополнительного источника питания, например автомобильной аккумуляторной батареи.
Схема для измерения сопротивления обмоток
Методика измерений следующая:
- Подключается катушка привода к схеме, представленной выше.
- Потенциометром устанавливается ток 1 А.
- Производится расчет сопротивления катушке по следующей формуле: , где RК и UПИТ были описаны на рисунке 2. R – сопротивление потенциометра, – падение напряжения на измеряемой катушке (показывает вольтметр на схеме).
Стоит также рассказать о методике, позволяющей определить место межвиткового замыкания. Это делается следующим образом:
Статор, освобожденный от ротора, подключается через трансформатор к пониженному питанию, предварительно поместив к нему стальной шарик (например, от подшипника). Если катушки рабочие, шарик будет циклически двигаться по внутренней поверхности безостановочно. При наличии межвиткового КЗ, он «прилипнет» к этому месту.
Тестирование стальным шариком
Особенности ремонта коллекторных приводов
У данного типа электромашин чаще возникают механические неисправности. Например, стирание щеток или засорение контактов коллектора. В таких ситуациях ремонт сводится к чистке контактного механизма или замене графитовых щеток.
Тестирование электрической части сводится к проверке сопротивления обмотки якоря. В этом случае щупы прибора двум соседним контактам (ламелям) коллектора, после снятия показаний производится измерение далее по кругу.
Проверка обмотки якоря коллекторного электродвигателя
Отображенное сопротивление должно быть примерно одинаковым (с учетом погрешности прибора). Если наблюдается серьезное отклонение, то это говорит, что имеет место быть межвитковое КЗ или обрыв, следовательно, необходима перемотка.
Обмоточные данные электродвигателей
Это справочные данные, поэтому самый надежный способ получить такую информацию – обратиться к соответствующим источникам. Эти данные также могут приводиться в паспорте к изделию.
В сети можно встретить советы, в которых рекомендуют при перемотке вручную пересчитать витки и измерить диаметр провода. Это трата времени. Значительно проще и надежней по маркировке двигателя найти всю необходимую информацию, в которой будут указаны следующие параметры:
- номинальные рабочие характеристики (напряжение, мощность, потребляемый ток, число оборотов и т.д.);
- количество проводов для одного паза;
- Ø проволоки (как правило, в данном показателе изоляция не учитывается);
- информация о внешнем и внутреннем диаметре статора;
- количество пазов;
- с каким шагом выполняется обмотка;
- размеры ротора и т.д.
Ниже представлен фрагмент таблицы с намоточными данными для электромашин типа 5A.
Пример таблицы с намоточными данными
Пошаговая инструкция перемотки электродвигателя своими руками
Необходимо сразу предупредить, что без спецоборудования и навыков работы перемотка катушек будет, скорее всего, бесполезным занятием. С другой стороны отрицательный опыт это тоже опыт. Понимание сложности процесса является лучшим объяснением его стоимости.
Первый этап — демонтаж
Мы приводим алгоритм действий для асинхронных машин, он следующий:
- Отключаем привод от сети (380 или 220 В).
- Демонтируем электромотор с конструкции, где он был установлен.
- Снимаем задний защитный кожух охлаждающего вентилятора.
- Демонтируем крыльчатку.
- Откручиваем крепление торцевых крышек, после чего снимаем их. Начинать желательно с фронтальной части, после ее демонтажа ротор легко «выйдет» с тыловой крышки.
- Вытаскиваем ротор.
Данный процесс можно существенно облегчить, если использовать специальное устройство – съемник. С его помощью легко освободить вал двигателя от шкива или шестерни, в также снять торцевые крышки.
Съемник для демонтажа
Мы не будем приводить инструкцию по разборке коллекторного двигателя, поскольку особо не отличается. Строение электромашины данного типа можно найти на нашем сайте.
Этап второй — снятие обмотки
Очередность действий следующая:
- При помощи ножа снимаем бандажный крепеж и изоляционное покрытие с мест соединений проводов. В некоторых инструкциях рекомендуется зафиксировать схему соединений, например, сделав фотоснимок. Делать это особого смысла нет, поскольку это справочная информация и узнать ее по марке двигателя не составляет проблемы.
- Используя зубило, сбиваем верхушки проводов с каждого торца статора.
- Освобождаем пазы, используя пробойник соответствующего диаметра.
- Очищаем статор от грязи, копоти, лака пропитки.
Статор, освобожденный от обмотки
На этом этапе мы рекомендуем остановиться, взять корпус и отвезти его специалистам. Самостоятельный демонтаж позволит снизить стоимость восстановительных работ. Как уже упоминалось выше, без спецоборудования качественно перемотать катушки довольно сложно. Для понимания сложности процесса опишем его технологию, что позволит облегчить выбор.
Перемотка статора (финальная фаза)
Процесс состоит из следующих действий:
- Установка изоляторов в каждый паз (гильзование).
- Толщина материала и его характеристики подбираются по справочнику.
- Определяются обмоточные данные по марке двигателя.
- На специальном станке производится намотка необходимого количества витков всыпных катушек. В сети можно найти фото и параметры самодельных ручных станков, но качество их работ довольно сомнительное. Станок для намотки всыпной обмотки
- Катушечные группы укладываются в пазы, после чего производится их обвязка и соединение. Эти процессы довольно сложные и выполняются вручную.
- Осуществляется пропитка. Для этого корпус нагревается до температуры 45°С – 55°С и полностью погружается в емкость с пропиточным лаком. Заливать лаком провода не имеет смысла, поскольку в этом случае все равно останутся пустоты.
- После пропитки корпус помещают в специальную камеру, где осуществляется сушка при температуре 130-135°С.
- Финальное тестирование катушек омметром.
- Сборка и пробный запуск (если в ремонт передавались на только корпус, а и остальные детали и крепления).
Если на восстановление сдавался только корпус, рекомендуем перед тем, как включать мотор, проверить катушки.
Перемотка якоря
Процесс замены обмотки коллекторного двигателя несколько похож за исключением небольших нюансов, связанных с особенностью исполнения. Например, на перемотку отправляют якорь, а не корпус, при условии, что проблема возникла не с катушками возбуждения. Помимо этого имеются следующие отличия:
- Для намотки применяется специальный станок, более сложной конфигурации.
- Обязательно необходима проточка, балансировка якоря (в финальной части процесса), а также его чистка и шлифовка.
- При помощи специального фрезерного станка производится нарезка коллектора.
Для перечисленных процессов требует спецоборудование, без него перемотка электродвигателей — пустая трата времени.