rahada.ru

Строительный журнал
12 просмотров
Рейтинг статьи
1 звезда 2 звезды 3 звезды 4 звезды 5 звезд
Загрузка...

Как создать плазменный тороид

Генерируем плазму в бутылке

Наверняка многие слышали о таком понятии как плазма. Для некоторых это явление ассоциируется даже с мистическими явлениями. На само деле, плазмой является всего то ионизированный газ. Это явление образуется, когда через газ проходит высокое напряжение, к примеру, как молния.

Сегодня мы рассмотрим, как можно приручить это удивительное явление. Мы попробуем создать плазму у себя дома. Автор для этих целей использует стеклянную бутылка, подойдет также банка, но желательно, чтобы емкость была как можно меньшего объема. Дело в том, что для образования плазмы нужно снизить давление газа, а ручными методами это делать долго.
Для самоделки автор использовал простейшие компоненты и инструменты

Материалы и инструменты, которые использовал автор:

Список материалов:
— стеклянная прозрачная бутылка (или другая прозрачная емкость);
— два медных провода;
— горячий клей ;
— холодная сварка;
— небольшие резиновые трубочки;
— шприц большого объема;
— стержень из углерода (есть в батарейках, советских карандашах…);
— трансформатор от микроволновки;
— кусок длинного медного провода (тонкого);
— пневматические клапана для изготовления насосика (откачивает воздух из бутылки).



Процесс изготовления самоделки:

Шаг первый. Сверлим…
Самым сложным этапом будет просверлить отверстие в стекле, оно должно быть такого диаметра, чтобы в него мог зайти провод. То есть, небольшое. Для сверления лучше всего использовать предназначенные для этих целей сверла со специальными наконечниками.
Сверлится отверстие в донышке бутылки.


Далее берем крышку бутылки, в ней нужно просверлить два отверстия. Одно отверстие будет небольшого диаметра (такое же, как в донышке), оно используется для подключения электрода. А второе отверстие должно быть побольше, сюда устанавливается силиконовая трубочка для отсоса воздуха.

Шаг второй. Устанавливаем трубочку
Вставьте трубочку в просверленное отверстие и закрепите при помощи горячего клея, желательно с обеих сторон. Чтобы клей хорошо пристал к металлу, крышку желательно прогреть, к примеру, феном.

Шаг третий. Крепим первый электрод
Вставьте в крышку кусок провода, зачистите на конце от изоляции. Для герметичности провод с обеих сторон нужно приклеить при помощи горячего клея.

Теперь нужно сделать электрод, он изготавливается из графитового стержня. Графит используется в карандашах, но будьте внимательны, в современных карандашах графита можно и не встретить. Проверьте стержень на электропроводность, если он проводит ток, значит, это графит. Примотайте небольшой кусочек к концу провода.




Шаг пятый. Система зажигания
Для зажигания дуги нужен скачок высокого напряжения. В люминесцентных лампах, к примеру, это делают специальные пусковые конденсаторы, модуль повышения мощности и так далее. Но автор все это не использовал, вместо этого ему понадобился длинный кусок тонкого провода. Этот кусок крепим внутри банки между электродами. Один конец просто приматываем к одному из электродов, а другой конец располагаем недалеко от второго электрода.

Теперь, когда вы встряхнете бутылкой, конец провода коснется контакта и закоротит его. Вследствие чего провод раскалиться, начнет гореть и в бутылке зародится плазма.






К электродам прибора подключите провода от трансформатора микроволновой печи, но пока не включайте его в сеть для безопасности.


Убедитесь, что в банке конец центрального провода находится недалеко от электрода. Включите трансформатор и подайте напряжение на электроды. Теперь встряхните банку, центральный провод должен замкнуть цепь и плазма загорится ярким свечением! Берегите глаза, так как свет будет очень ярким.

Если все получилось, поздравляю, вы своими руками смогли создать дома плазму.
Источник

Изготовление плазмореза из инвертора своими руками: инструкция, схемы, видео

Заводской аппарат для плазменной резки. Наша задача: сделать аналог своими руками

Сделать функциональный плазморез своими руками из серийного сварочного инвертора не так уж сложно, как это может показаться на первый взгляд. Для того чтобы решить эту задачу, необходимо подготовить все конструктивные элементы такого устройства:

  • плазменный резак (его также называют плазмотроном);
  • сварочный инвертор или трансформатор, который будет выступать в роли источника электрического тока;
  • компрессор, при помощи которого будет создаваться струя воздуха, необходимая для формирования и охлаждения потока плазмы;
  • кабели и шланги для объединения в одну систему всех конструктивных элементов аппарата.

Общая схема работы плазменной резки

Плазморез, в том числе и самодельный, успешно используется для выполнения различных работ как в производственных, так и в домашних условиях. Незаменим такой аппарат в тех ситуациях, когда необходимо выполнить точный, тонкий и высококачественный рез заготовок из металла. Отдельные модели плазморезов по своим функциональным возможностям позволяют использовать их в качестве сварочного аппарата. Такая сварка выполняется в среде защитного газа аргона.

Газовый шланг и обратный кабель для плазменной резки

При выборе для комплектации самодельного плазмотрона источника питания важно обращать внимание на силу тока, которую такой источник сможет вырабатывать. Чаще всего для этого выбирают инвертор, обеспечивающий высокую стабильность процессу плазменной резки и позволяющий более экономно расходовать электроэнергию. Отличаясь от сварочного трансформатора компактными габаритами и легким весом, инвертор более удобен в использовании. Единственным минусом применения инверторных плазморезов является трудность раскроя с их помощью слишком толстых заготовок.

Горелка плазменного резака ABIPLAS и ее составные части

Читать еще:  Как определить бронзу в домашних условиях

При сборке самодельного аппарата для выполнения плазменной резки можно использовать готовые схемы, которые несложно найти в интернете. В Сети, кроме того, есть видео по изготовлению плазмореза своими руками. Используя при сборке такого устройства готовую схему, очень важно строго ее придерживаться, а также обращать особенное внимание на соответствие конструктивных элементов друг другу.

Схемы плазмореза на примере аппарата АПР-91

Схема силовой части (нажмите для увеличения)

Схема управления плазмореза (нажмите для увеличения)

Схема осциллятора (нажмите для увеличения)

Элементы самодельного аппарата для плазменной резки

Первое, что необходимо найти для изготовления самодельного плазмореза, – это источник питания, в котором будет формироваться электрический ток с требуемыми характеристиками. Чаще всего в этом качестве используются инверторные сварочные аппараты, что объясняется рядом их преимуществ. Благодаря своим техническим характеристикам такое оборудование обеспечивает высокую стабильность формируемого напряжения, что положительно сказывается на качестве выполнения резки. Работать с инверторами значительно удобнее, что объясняется не только их компактными габаритами и незначительным весом, но и простотой настройки и эксплуатации.

Принцип работы плазмореза

В отдельных случаях источником питания для плазмореза может служить сварочный трансформатор, но его использование чревато значительным потреблением электроэнергии. Следует также учитывать и то, что любой сварочный трансформатор отличается большими габаритами и значительной массой.

Основным элементом аппарата, предназначенного для раскроя металла при помощи струи плазмы, является плазменный резак. Именно данный элемент оборудования обеспечивает качество резки, а также эффективность ее выполнения.

Форма и размер плазменной струи зависит от диаметра сопла

Для формирования воздушного потока, который будет преобразовываться в высокотемпературную струю плазмы, в конструкции плазмореза используется специальный компрессор. Электрический ток от инвертора и воздушный поток от компрессора подаются к плазменному резаку при помощи кабель-шлангового пакета.

Центральным рабочим элементом плазмореза является плазмотрон, конструкция которого состоит из следующих элементов:

  • сопла;
  • канала, по которому подается воздушная струя;
  • электрода;
  • изолятора, который одновременно выполняет функцию охлаждения.

Конструкция плазменного резака и рекомендации по его изготовлению

Первое, что необходимо сделать перед изготовлением плазмотрона, – это подобрать для него соответствующий электрод. Наиболее распространенными материалами, из которых делают электроды для выполнения плазменной резки, являются бериллий, торий, цирконий и гафний. На поверхности данных материалов при нагревании формируются тугоплавкие оксидные пленки, которые препятствуют активному разрушению электродов.

Сменные насадки для плазмотрона

Некоторые из вышеперечисленных материалов при нагревании могут выделять опасные для здоровья человека соединения, что следует обязательно учитывать, выбирая тип электрода. Так, при использовании бериллия формируются радиоактивные оксиды, а испарения тория при их соединении с кислородом образуют опасные токсичные вещества. Совершенно безопасным материалом, из которого делают электроды для плазмотрона, является гафний.

За формирование струи плазмы, благодаря которой и выполняется резка, отвечает сопло. Его изготовлению следует уделить серьезное внимание, так как от характеристик данного элемента зависит качество рабочего потока.

Строение сопла плазменной горелки

Как уже говорилось выше, в конструкции плазмореза обязательно присутствует компрессор, формирующий и подающий к соплу воздушный поток. Последний необходим не только для формирования струи высокотемпературной плазмы, но и для охлаждения элементов аппарата. Использование сжатого воздуха в качестве рабочей и охлаждающей среды, а также инвертора, формирующего рабочий ток силой 200 А, позволяет эффективно разрезать металлические детали, толщина которых не превышает 50 мм.

Выбор газа для плазменной резки металла

Для того чтобы приготовить аппарат для плазменной резки к работе, необходимо соединить плазмотрон с инвертором и воздушным компрессором. Для решения такой задачи используется кабель-шланговый пакет, который применяют следующим образом.

  • Кабелем, по которому будет подаваться электрический ток, соединяются инвертор и электрод плазмореза.
  • Шлангом для подачи сжатого воздуха соединяют выход компрессора и плазмотрон, в котором из поступающего воздушного потока будет формироваться струя плазмы.

Особенности работы плазмореза

Чтобы сделать плазморез, используя для его изготовления инвертор, необходимо разобраться в том, как такой аппарат работает.

После включения инвертора электрический ток от него начинает поступать на электрод, что приводит к зажиганию электрической дуги. Температура дуги, горящей между рабочим электродом и металлическим наконечником сопла, составляет порядка 6000–8000 градусов. После зажигания дуги в камеру сопла подается сжатый воздух, который проходит строго через электрический разряд. Электрическая дуга нагревает и ионизирует проходящий через нее воздушный поток. В результате его объем увеличивается в сотни раз, и он становится способным проводить электрический ток.

При помощи сопла плазмореза из токопроводящего воздушного потока формируется уже струя плазмы, температура которой активно повышается и может доходить до 25–30 тысяч градусов. Скорость плазменного потока, за счет которого и осуществляется резка деталей из металла, на выходе из сопла составляет порядка 2–3 метров в секунду. В тот момент, когда струя плазмы соприкасается с поверхностью металлической детали, электрический ток от электрода начинает поступать по ней, а первоначальная дуга гаснет. Новая дуга, которая горит между электродом и обрабатываемой деталью, называется режущей.

Характерной особенностью плазменной резки является то, что обрабатываемый металл плавится только в том месте, где на него воздействует плазменный поток. Именно поэтому очень важно сделать так, чтобы пятно воздействия плазмы находилось строго по центру рабочего электрода. Если пренебречь этим требованием, то можно столкнуться с тем, что будет нарушен воздушно-плазменный поток, а значит, ухудшится качество выполнения реза. Для того чтобы соблюсти эти важные требования, используют специальный (тангенциальный) принцип подачи воздуха в сопло.

Читать еще:  Какие бывают транзисторы по виду

Необходимо также следить за тем, чтобы не образовалось сразу два плазменных потока вместо одного. Возникновение такой ситуации, к которой приводит несоблюдение режимов и правил выполнения технологического процесса, может спровоцировать выход инвертора из строя.

Параметры плазменной резки различных металлов (нажмите для увеличения)

Важным параметром плазменной резки является скорость воздушного потока, которая не должна быть слишком большой. Хорошее качество реза и быстроту его выполнения обеспечивает скорость воздушной струи, равная 800 м/сек. При этом сила тока, поступающего от инверторного аппарата, не должна превышать 250 А. Выполняя работу на таких режимах, следует учитывать тот факт, что в этом случае увеличится расход воздуха, используемого для формирования плазменного потока.

Самостоятельно сделать плазморез несложно, если изучить необходимый теоретический материал, просмотреть обучающее видео и правильно подобрать все необходимые элементы. При наличии в домашней мастерской такого аппарата, собранного на основе серийного инвертора, может качественно выполняться не только резка, но и плазменная сварка своими руками.

Если в вашем распоряжении нет инвертора, можно собрать плазморез и на основе сварочного трансформатора, но тогда придется смириться с его большими габаритами. Кроме того, плазморез, изготовленный на основе трансформатора, будет обладать не очень хорошей мобильностью, так как переносить его с места на место затруднительно.

ТОР как человеческая энергоформа

Горизонтальные и вертикальные энергии в нас

Каждый энергообъект во вселенной: и элементарная частица, и галактика геометрически представляют собою ТОР как энергообъекты. И человек в том числе. Легче всего представить яблоко, которое растёт именно как ТОРоид с центром, осью и круговой поверхностью. Причём явственны оба конца оси из которых ТОРчат плодоножка и завязь. Равно как и планеты имеют северный и южный полюса…
Любая неискажённая манифестация энергии имеет форму ТОРа. И человеческая энергетика – также ТОРоидальна: наш позвоночник – это ось нашей энергетики, центральный канал ТОРа, электричество по которому движется как вверх, так и вниз одновременно (т.н. каналы Ида и Пингала в йоге). Итак, энергии по позвоночнику движутся в обе стороны создавая электромагнитный кокон-яблоко вокруг тела, распространяющийся в разных плотностях от нескольких сантиметров – теоретически до безконечности, как и электромагнитное поле вокруг любого проводника по которому течёт электроток. А наша энергетика – и есть электричество. Процессы в организме протекают электрохимические. Именно по плотности и близости к телу, по частоте и распределяются условно делимые слои нашей ауры.

То есть наша аура, наше биополе одновременно имеет форму бесконечно распространяющегося яйца-шара (более плотного к центру, естественно), так же как из этого шара выделяются воронки-лучи вертикального и горизонтальных связей.

В ТОРе присутствуют «паразитарные» токи энергий – так называемые чакры, забирающие у вертикального столба электричество для ГОРИЗОНТАЛЬНЫХ взаимодействий. Это и еда, и секс, и эмоции, и ментальность. Эти и иные взаимодействия у обычных людей меж собою и в социуме вообще – действительно отнимают слишком много энергии судя по сегодняшнему положению вещей. Они обслуживают различные эгрегоры, начиная с эгрегоров пищевых компаний, эротики – и вплоть до религиозных и политических.
Любовь и ненависть, страх и спесь, чревоугодие и идеализм (религиозный, политический, искусство, семья и пр.), сексуальная одержимость и сребролюбие – все эти и иные виды энергитических запросов и обслуживаний сильно ослабляют основной позвоночный энергоканал, а часто бывают и причинами смерти, старости и болезней преждевременных даже для обычной жизни обывателя.
Когда люди болеют — их аура рваная, слабая, мало похожа на ТОР-яблочко. И наоборот. Говорят у Будды была аура в форме идеального яйца. Быть может ему даже вертикальный столб уже был не нужен. Он САМ СЕБЕ стал вселенной, автономным энергосубьектом.
Итак, различные виды лучей-воронок взаимодействий так или иначе деформируют и чаще всего ослабляют ауру, энергетику.

Именно поэтому в классической йоге кандидаты проходят длинный многолетний путь очищения от этой активности, а в буддизме рекомендуется отказаться вообще от любых желаний и материальной деятельности…
Даже многие психические «сверхспособности» — результат активизации шестой чакры в центре головного мозга – также горизонтальная воронка-луч, и стремление к ним ослабляет освобождение.

Освобождение же — процесс энергоинформационного отцепления от всяких паразитарных связей.

Энергии в чакрах входят сзади и выходят спереди. Это то, что мы получаем извне из социума и излучаем в него же…
Человеческое тело – биомасса работающая на электричестве. Чем больше в нас электричества (плазменное тело) – тем более мы активны в своих проявлениях.

Поэтому идущему по пути ЧелоВека Силы-РаДости – самому выбирать сколько он согласен тратить на горизонтальные взаимодействия, и сколько оставить себе на взлёт….
Думаю что путь энергизации позволит в конце-концов без сильного аскетизма накопить довольный потенциал и для вертикальной эволюции. Хотя это, конечно, не только вопрос количества электричества, но и чистоты его потоков, так что без некоторых ограничений вряд ли можно будет обойтись для вертикального движения….

Читать еще:  Подключение светильника к выключателю 2 х клавишному

TechnologySide

Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Формирование шаровой молнии

Итак, плазменный тороид в завершающей стадии формирования стянут двумя собственными магнитными полями в овальную форму со сквозным вертикальным отверстием небольшого диаметра на месте центральной вертикальной оси. Центральное отверстие тороида сократилось, потому что упругость силовых линий захваченного магнитного поля линейной молнии и упругость силовых линий собственного продольного поля направлены к центральной оси тороида, а они стремятся сократиться до возможно минимальной длины. Через это отверстие замыкаются все силовые линии другого собственного поперечного магнитного поля тороида, которые также стремятся сократиться до минимальной длины. Стянутый тороид (теперь овал) выглядит в поперечном сечении как два рядом расположенных вертикально удлиненных плосковыпуклых овала, обращенных плоскими сторонами к отверстию. Массивные ионы движутся по периферии овала, то есть по широким спиралям, сжатым в овал, образующим в результате такого движения замкнутую овальную трубу. Внутри вдоль трубы в верхней ее половине движутся с некоторым преимуществом протоны по спиралям меньшего радиуса, а в нижней половине – преимущественно электроны по своим спиралям совсем малого радиуса. Хотя плазменный овал в целом остается квазинейтральным, но поскольку положительные ионы преимущественно движутся по периферии овала, то этим самым они экранируют отрицательный заряд внутренних электронов и внешне у шаровой молнии больше проявляется положительный заряд.

На рисунке изображена в поперечном сечении шаровая молния, представляющая собою плазменный тороид, стянутый двумя собственными магнитными полями. В сечении тороид выглядит как два плосковыпуклых овала, обращенных плоскими сторонами к центральному отверстию. Продольное поле окрашено условно синим цветом, поперечное зеленым и изображены эти поля также условно одно поверх другого, в действительности же они взаимно пронизывают друг друга. Азотные и кислородные ионы, движущиеся по спиралям на периферии тороида, образуют замкнутую саму на себя овальную трубу большого диаметра. Внутри трубы по замкнутому кольцу движутся протоны и электроны по спиралям малого диаметра. При формировании тороида часть протонных спиралей сместились вверх, а часть электронных спиралей сместились вниз овальной трубы. Разделившиеся протоны и электроны образуют электрическое поле, иначе говоря, заряженный электрический конденсатор.

Наблюдатели сообщают, что иногда из ярко светящегося клубка, возникающего на нижнем конце разряда линейной молнии, выскакивают несколько шаровых молний. Наблюдают шаровые молнии, которые разделяются на несколько мелких молний. Наблюдались шаровые молнии, из которых даже при взрыве выскакивали молнии меньшего размера.

Думается, что предлагаемая идея может объяснить такие явления. При разряде линейной молнии в магнитное поле с холодной плазмой, охватывающей ее торец, влетают несколько пространственно разделенных порций горячей плазмы. Каждая отдельная порция горячих ионов и электронов образуют там с уже имеющимися ионными и электронными спиралями свою обособленную от других подогретую спиральную трубу, замкнутую в тороид. В результате внутри каждой подогретой тороидальной трубы в магнитном поле движутся по своим спиральным дорожкам электроны и протоны и те, что были там и те, что влетели в холодную плазму вместе с порцией горячей плазмы. Двигаясь в неоднородном магнитном поле внутри ионной трубы, протоны и электроны частично разделяются, образуя электрическое поле. Если образовавшиеся автономные тороиды не успели объединиться, сцепившись собственными поперечными магнитными полями, то они выталкиваются в атмосферу по отдельности, а если успели объединиться, то выталкивается одна большая шаровая молния в виде удлиненного овала. В [4, стр. 120] говорится: «М.Т.Дмитриев отмечает, что шаровая молния (точнее, центральная ее часть, окруженная ореолом) представляла собой вытянутый вдоль вертикального диаметра шар». Далее говорится: «Ряд других наблюдателей сообщают о вытягивании молний вдоль вертикального диаметра, изредка довольно значительном, в большинстве же случаев – небольшом».

Таким образом, шаровая молния может включать в себя несколько автономных молний. Автономные тороиды молний нанизаны на одну общую ось, проходящую через центральные отверстия тороидов. Каждый тороид охвачен локально собственным продольным магнитным полем, а собственные поперечные магнитные поля тороидов, складываясь, образуют одно общее поперечное магнитное поле, охватывающее все автономные тороиды и замыкающееся через общее центральное отверстие шаровой молнии. При возникновении неустойчивости объединенная молния может разделиться, иногда с взрывом, то есть взрывается одна из них, а некоторые при взрыве могут и уцелеть.

Немного больше о технологиях >>>

Классификация изобретений и НТП
«Экономична мудрость бытия, все новое в нем шьется из старья». В.Шекспир В шестом веке до нашей эры в древнегреческой колонии Сибарис — крупном по тем временам торговом центре, жители которого славились любовью к роскоши, — существовал обычай, по которому повар, пр .

Преобразователь разности давлений Сапфир-22ДД
Описание контура. Назначение. Технические данные. Устройство и работа. Техническое обслуживание. Монтаж прибора. Настройка и проверка. Основные неисправности. Техника безопасности. Сапфир-22ДД-Ex (датчик расхода) В химической промышленности комплексной механизац .

Ссылка на основную публикацию