rahada.ru

Строительный журнал
14 просмотров
Рейтинг статьи
1 звезда 2 звезды 3 звезды 4 звезды 5 звезд
Загрузка...

Формула для расчета периода колебаний пружинного маятника

Пружинный маятник — формулы и уравнения нахождения величин

Пружинный маятник — колебательная система, которая состоит из тела, подвешенного к пружине. Эта система способна к совершению свободных колебаний.

Подобные системы довольно широко распространены за счет своей функциональной гибкости. Механизмы на основе таких маятников часто используются как элементы средств автоматики.

В том числе они нашли применение в контактных взрывателях различных боеприпасов, в качестве акселерометров в контурах управления ракет. Так же они активно используются в предохранительных клапанах, устанавливаемых в трубопроводах.

Что такое пружинный маятник

Пружинным маятником в физике называют систему, совершающую колебательные движения под действием силы упругости.

Приняты следующие обозначения:

k — коэффициент жесткости пружины.

Общий вид маятника:

Особенностями пружинных маятников являются:

Сочетание тела и пружины. Массой пружины обычно в расчетах пренебрегают. Роль тела могут играть различные объекты. На них оказывают действие внешние силы. Груз может крепиться разными способами. Витки пружины, которыми она начинается и заканчивается, изготавливают с учетом повышенной нагрузки;

У любой пружины есть исходное положение, предел сжатия и растяжения. При максимальном сжатии зазора между витками нет. Когда она максимально растянута, возникает необратимая деформация;

Полная механическая энергия появляется с началом процесса обратимого деформирования. В этот момент на объект не оказывает действие сила упругости;

Колебательные движения происходят под влиянием силы упругости. Масштаб влияния определяется несколькими причинами (тип сплава, расположение витков и т. д.). Так как может происходить и сжатие и растяжение, можно сделать вывод, что сила упругости действует в двух противоположных направлениях;

От массы тела, величины и направления прикладываемой силы зависит скорость в плоскости его перемещения. Например, если подвесить груз к пружине и, растянув её, отпустить, то груз будет перемещаться в двух плоскостях: вертикально и горизонтально.

Виды пружинных маятников

Существует два типа данной системы:

Вертикальный маятник — на тело довольно сильно влияет сила тяжести. Это влияние обуславливает увеличение инерционных движений, которые совершает тело в исходной точке.

Горизонтальный — в таком варианте при движении на груз начинает действовать сила трения, возникающая по причине того, что груз лежит на поверхности.

Сила упругости в пружинном маятнике

До начала деформирования пружина находится в равновесном состоянии. Прикладываемое усилие может как растягивать, так и сжимать её.

Применяя к пружинному маятнику закон сохранения энергии, мы можем рассчитать силу упругости в нем. Упругость прямо пропорциональна расстоянию, на которое сместился груз.

Расчёт силы упругости может быть проведен таким образом:

где k — коэффициент жесткости пружины (Нм),

Уравнения колебаний пружинного маятника

Свободные колебания пружинного маятника описываются с помощью гармонического закона.

Если допустить вероятность того, что колебания идут вдоль оси Х, и при этом выполняется закон Гука, то уравнение примет вид:

F(t) = ma(t) = — mw2x(t),

где w — радиальная частота гармонического колебания.

Для проведения расчета колебаний, учитывая все вероятности, применяют следующие формулы:

Период и частота свободных колебаний пружинного маятника

При разработке проектов всегда определяется период колебаний и их частота. Для их измерения используются известные в физике формулы.

Изменение циклической частоты покажет формула, приведенная на рисунке:

Факторы, от которых зависит частота:

Коэффициент упругости. На этот коэффициент влияет количество витков, их диаметр, расстояние между ними, длина пружины, жесткость используемого сплава и т. д.

Масса груза. От этого фактора зависит возникающая инерция и скорость перемещения.

Амплитуда и начальная фаза пружинного маятника

Учитывая начальные условия и рассчитав уравнение колебаний, можем точно описать колебания пружинного маятника.

В качестве начальных условий используются: амплитуда (А) и начальная фаза колебаний (ϕ).

Энергия пружинного маятника

При рассмотрении колебания тел учитывают, что груз движется прямолинейно. Полная механическая энергия тела в каждой точке траектории является константой и равняется сумме его потенциальной энергии и кинетической энергии.

Расчет имеет особенности. При его проведении нужно учитывать несколько условий:

Колебания проходят в двух плоскостях: вертикальной и горизонтальной.

В качестве равновесного положения выбирается ноль потенциальной энергии. Находясь в этом положении пружина сохраняет свою форму.

Влияние силы трения при расчете не учитывают.

Дифференциальное уравнение гармонических колебаний пружинного маятника

Отметим, что пружинный маятник — это обобщенное определение. Скорость движения груза (тела) напрямую зависит от комплекса условий, в том числе приложенного к нему усилия.

Формула для расчета периода колебаний пружинного маятника

1. Жесткость пружинного маятника 8000 Н/м. Чему равен период и частота его колебаний?

2. Два одинаковых пружинных маятника колеблются с амплитудами — 3 и 6 см. Как различаются периоды их колебаний?

3. Пружинный маятник совершил 15 колебаний за одну минуту. Каковы период и частота колебаний?

4. Координаты пружинного маятника изменяются по закону

.

Чему равны амплитуда, период и частота колебаний. В формуле все величины выражены в системе СИ.

Краткая теория:

Пружинный маятник – это груз, колеблющийся на пружине. Он соверщает возвратно-поступательное движение. Пружинный маятник подчиняется законам движения, по которым можно определить период его колебаний, зная массу груза и жесткость пружины. Период колебаний пружинного маятника не зависит от места его расположения и амплитуды колебаний.

Формулы для решения :

Алгоритм решения типовой задачи:

1. Кратко записываем условие, изображаем его графически. На рисунке обозначаем необходимые данные: силы, действующие на маятник, направление его движения и другие.
2. Записываем основную формулу для определения периода колебаний пружинного маятника и другие необходимые формулы колебательного движения. Определяем, какие величины надо найти из других механических соотношений, записываем их.
3. Решаем полученные уравнения в общем виде.
4. Подставляем данные, вычисляем. Перед подстановкой переводим все данные в единую систему.
5. Записываем ответ.

Читать еще:  Рейсмус и фуганок в чем разница

Примеры решения:


Задача 1.

Масса груза пружинного маятника 0,5 кг, жесткость пружины 8000 Н/м. Чему равен период и частота его колебаний?

1. Кратко записываем условие, изображаем его графически.

2. Записываем основную формулу для определения периода колебаний пружинного маятника и соотношение между периодом и частотой колебаний.

3. Решаем полученные уравнения в общем виде. Формулы сразу дают общее решение.

4. Подставляем данные, вычисляем.

5. Ответ: Частота колебаний примерно 20 герц, их период – 0,05 секунды.

Задача 2.

Два одинаковых пружинных маятника колеблются с амплитудами — 3 и 6 см. Как различаются периоды их колебаний?

1. Кратко записываем условие, изображаем его графически.

2. Записываем основную формулу для определения периода колебаний пружинного маятника.

3. Решаем полученные уравнения в общем виде.

4. Подставляем данные, вычисляем.

5. Ответ: Период колебаний пружинного маятника не зависит от амплитуды.

Задача 3.

Пружинный маятник совершил 15 колебаний за одну минуту. Каковы период и частота колебаний?

1. Кратко записываем условие, изображаем его графически.

2. Частота колебаний – это их количество в единицу времени. Единица времени в системе СИ – секунда. Значит, надо просто найти количество колебаний в секунду. Для этого количество колебаний в минуту надо разделить на 60, так как в минуте 60 секунд.

Период – величина, обратная частоте.

3. Решаем полученные уравнения в общем виде. Формулы сразу дают общее решение.

4. Подставляем данные, вычисляем.

5. Ответ: период колебаний равен 4 секундам, их частоту – 0,25 герца.

Задача 4.

Координаты пружинного маятника изменяются по закону

.

Чему равны амплитуда, период и частота колебаний. В формуле все величины выражены в системе СИ.

1. Кратко записываем условие, изображаем его графически.

2. Записываем общее уравнение гармонического колебания. Сравниваем заданное уравнение движения маятника с общим уравнением.

3. Из сравнения получаем:

Отсюда легко вычисляется частота и период колебаний.

4. Подставляем данные, вычисляем

5. Ответ: Амплитуда колебаний равна 0,5 метра, период – четырем секундам, частота – 0,25 Гц.

Колебания груза на пружине – формулы, уравнения и задачи

Теория периодичности относится к общей физике. Повторяемость некоторых процессов в течение времени определяют с помощью различных величин, например, угла, напряжённости, температуры. Для изучения явления удобно использовать маятник. Одним из его видов является пружина с грузом. Колебания в такой системе зависят от периода, частоты и амплитуды. Узнать эти параметры можно, зная начальные условия и уравнения, описывающие механическую работу.

Общие сведения

Колебания — это изменения какой-либо величины в точности или приблизительно повторяющиеся во времени. Если рассматривать процесс, с точки зрения механики, то он описывается положением тела. Повторение в точности является периодическим. Математически это можно записать формулой: x (t + T) = x (t), где T — время, в течение которого совершается одно полное колебание (период). Число циклов принято обозначать буквой N. Его находят как отношение времени к периоду: N = t / T.

При исследовании процесса не всегда бывает удобно оперировать временем, поэтому часто используют число колебаний за единицу времени. Эта величина называется частотой. Находят её количество по формуле: f = 1 / T. Доказать справедливость приведённого равенства просто. Число колебаний зависит от времени и частоты: N = f * t. Отсюда: f = N / t = (t / T) / t = 1 / T.

Очень важно не только понимать суть характеристик колебания, но и знать единицы его измерения. Вот основные из них:

  • период — секунды (с);
  • частота — герцы (Гц);
  • число колебаний — безразмерная величина.

Если в течение времени меняется и координата, то периодически будет изменяться и скорость. Значит: vx (t + T) = Vx (t).

Исходя из верности равенства, можно сказать, что условие периодичности будет справедливо и для проекции, то есть изменения ускорения. Отсюда следует, что сила действующая на тело тоже будет переменной: Fx (t + T) = Fx (t).

При процессе также происходит изменение потенциальной и кинетической энергий. Действительно, так как в процессе колебания скорость не является постоянной величиной, то соответственно будет меняться кинетическая работа. Потенциальная же энергия зависит от координат. Например, если рассмотреть период колебаний пружинного маятника, то за это время тело переместится из нижнего положения в верхнее и вернётся обратно. Значит, координата физического объекта изменится от нуля до какого-то граничного значения.

Следует отметить, что периодичные движения обязательно будут происходить в той системе, в которой есть положение равновесия. Причём оно должно быть устойчивым. То есть существует равнодействующая сила, стремящаяся привести объект в положение, соответствующее покою. Поэтому для поддержания отклонений нужна дополнительная сила. Колебательную систему (осциллятор) под действием вынужденной периодической силы называют вынужденной.

Пружинный маятник

Это устройство является простейшим примером свободных колебаний. В его состав входит кронштейн, пружина и груз. В качестве последнего может выступать любое физическое тело. Масса пружины по сравнению с грузом считается малой и при исследованиях не учитывается.

При изучении такой системы важной задачей является измерение периода движения тела, подвешенного к пружине. Определение понятию пружинного маятника, которое даётся в учебниках по физике довольно обобщённое. Считается, что это конструкция, в которой тело, имеющее массу m, подвешено на упругой пружине обладающей жёсткостью K. При этом из состояния равновесия систему может вывести упругая сила F = – k * x, где: x- расстояние от середины пружинного элемента до поверхности прикреплённого к нему груза.

Читать еще:  Виды степлеров для бумаги

Можно выделить два достаточных условия возникновения свободных колебаний:

  • Во время отклонения тела от положения равновесия должна возникать возвращающая сила.
  • Силы сопротивления (трения) должны быть малы по сравнению со стремящей вернуть энергией тело назад.

    Суть изучения гармонических колебаний состоит в определении их частоты движения или периода. В пружинном маятнике, впрочем, как и в любой колебательной системе, параметры зависят от ряда характеристик. Из основных величин, описывающих процесс, можно выделить: массу груза и жёсткость. Поэтому задача и состоит в выяснении, как период зависит от этих двух параметров.

    Во время экспериментов регулировать массу довольно легко. Для этого можно взять эталонные гири и, соединяя их, увеличивать вес. Жёсткость же пружины можно изменить, добавляя параллельно или последовательно к ней другое сжимающееся тело. Чтобы выяснить, как будет изменяться характеристика растягивающегося элемента, нужно знать, что же представляет собой параметр. Так, под жёсткостью тела понимают отношение силы упругости к удлинению: k0 = F / Δ L. Измеряется величина в ньютонах, делённых на метр (Н/м).

    Исходя из правила, если соединить две пружины параллельно и деформировать их, то можно утверждать, что первый и второй элемент растянется на одинаковую длину ΔL. Значит, возникнет две одинаково направленных силы упругости. Отсюда равнодействующая будет равняться: K = 2F/ ΔL = 2k0. Для последовательного же соединения длина всей системы увеличится на 2 ΔL. Сила упругости будет равна F. Соответственно, жёсткость будет изменяться по формуле: K = F / 2ΔL = k0 / 2.

    Зависимость периода

    При проведении эксперимента можно исследовать пять различных комбинаций поведения груза на пружине — два варианта связаны с весом и три с жёсткостью. Чтобы выполнить опыт самостоятельно нужно будет взять вертикальный кронштейн, две одинаковые пружины и два равных по весу груза. Так как в реальности период будет довольно маленький, то для его измерения можно взять время, например, пятидесяти колебаний, а потом полученный результат разделить на это число. Подсчёт времени удобно выполнять с помощью секундомера.

    Вычисленные результаты нужно занести в таблицу. Примерный порядок чисел должен получиться таким:

    Механические колебания.

    Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

    Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

    Колебания — это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

    Колебания механических систем, или механические колебания — это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

    Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия — это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

    Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

    Амплитуда колебаний тела — это величина его наибольшего отклонения от положения равновесия.

    Период колебаний — это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

    Частота колебаний — это величина, обратная периоду: . Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

    Гармонические колебания.

    Будем считать, что положение колеблющегося тела определяется одной-единственной координатой . Положению равновесия отвечает значение . Основная задача механики в данном случае состоит в нахождении функции , дающей координату тела в любой момент времени.

    Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них — синус и косинус — являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

    Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на , можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

    Гармонические колебания — это колебания, при которых координата зависит от времени по гармоническому закону:

    Выясним смысл входящих в эту формулу величин.

    Положительная величина является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому — амплитуда колебаний.

    Аргумент косинуса называется фазой колебаний. Величина , равная значению фазы при , называется начальной фазой. Начальная фаза отвечает начальной координате тела: .

    Величина называется циклической частотой. Найдём её связь с периодом колебаний и частотой . Одному полному колебанию отвечает приращение фазы, равное радиан: , откуда

    Измеряется циклическая частота в рад/с (радиан в секунду).

    В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1) :

    График функции (1) , выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1 .

    Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

    Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае , поэтому можно положить . Мы получаем закон косинуса:

    Читать еще:  Домкрат подкатной 3 5 тонны ремонт

    График гармонических колебаний в этом случае представлен на рис. 2 .

    Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае , так что можно положить . Получаем закон синуса:

    График колебаний представлен на рис. 3 .

    Уравнение гармонических колебаний.

    Вернёмся к общему гармоническому закону (1) . Дифференцируем это равенство:

    Теперь дифференцируем полученное равенство (4) :

    Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем :

    Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:

    C математической точки зрения уравнение (7) является дифференциальным уравнением. Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
    Так вот, можно доказать, что:

    -решением уравнения (7) является всякая функция вида (1) с произвольными ;

    -никакая другая функция решением данного уравнения не является.

    Иными словами, соотношения (6) , (7) описывают гармонические колебания с циклической частотой и только их. Две константы определяются из начальных условий — по начальным значениям координаты и скорости.

    Пружинный маятник.

    Пружинный маятник — это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

    Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4 ). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

    Трением пренебрегаем. Груз имеет массу , жёсткость пружины равна .

    Координате отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

    В горизонтальном направлении на груз действует только сила упругости со стороны пружины. Второй закон Ньютона для груза в проекции на ось имеет вид:

    Если 0′ class=’tex’ alt=’x>0′ /> (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и . Наоборот, если , то 0′ class=’tex’ alt=’F_>0′ /> . Знаки и всё время противоположны, поэтому закон Гука можно записать так:

    Тогда соотношение (8) принимает вид:

    Мы получили уравнение гармонических колебаний вида (6) , в котором

    Циклическая частота колебаний пружинного маятника, таким образом, равна:

    Отсюда и из соотношения находим период горизонтальных колебаний пружинного маятника:

    Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10) .

    Математический маятник.

    Математический маятник — это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5 ). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

    Найдём период малых колебаний математического маятника. Длина нити равна . Сопротивлением воздуха пренебрегаем.

    Запишем для маятника второй закон Ньютона:

    и спроектируем его на ось :

    Если маятник занимает положение как на рисунке (т. е. 0′ class=’tex’ alt=’x>0′ /> ), то:

    Если же маятник находится по другую сторону от положения равновесия (т. е. ), то:

    Итак, при любом положении маятника имеем:

    Когда маятник покоится в положении равновесия, выполнено равенство . При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство . Воспользуемся им в формуле (11) :

    Это — уравнение гармонических колебаний вида (6) , в котором

    Следовательно, циклическая частота колебаний математического маятника равна:

    Отсюда период колебаний математического маятника:

    Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

    Свободные и вынужденные колебания.

    Говорят, что система совершает свободные колебания, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
    воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

    Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

    Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

    В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6 ).

    Вынужденные колебания — это колебания, совершаемые системой под воздействием внешней силы , периодически изменяющейся во времени (так называемой вынуждающей силы).

    Предположим, что собственная частота колебаний системы равна , а вынуждающая сила зависит от времени по гармоническому закону:

    В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой
    вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

    Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7 .

    Мы видим, что вблизи частоты наступает резонанс — явление возрастания амплитуды вынужденных колебаний. Резонансная частота приближённо равна собственной частоте колебаний системы: , и это равенство выполняется тем точнее, чем меньше трение в системе. При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, , а амплитуда колебаний возрастает до бесконечности при .

  • Ссылка на основную публикацию