rahada.ru

Строительный журнал
50 просмотров
Рейтинг статьи
1 звезда 2 звезды 3 звезды 4 звезды 5 звезд
Загрузка...

Диагональ правильного шестиугольника формула

Правильная шестиугольная призма – свойства, признаки и формулы

Одним из фундаментальных объектов в геометрии является многоугольник. Если рассматривать фигуру в трёхмерном пространстве, то с помощью двух таких геометрических тел с шестью углами можно построит правильную шестиугольную призму. При этом боковые грани обязательно будут прямоугольниками. По своему виду такая фигура напоминает пчелиные соты, поэтому она и интересна для изучения архитекторам и математикам.

Общие сведения

Призма представляет собой многогранную объёмную фигуру. Две стороны её всегда конгруэнтные (равные) и расположены относительно друг друга в параллельных плоскостях. Остальные же грани являются параллелограммами и формируют общие боковые основания с параллельными поверхностями. Четырёхугольники состоят из попарно равноудалённых прямых. Называют их боковыми гранями призмы. Оставшиеся же 2 многоугольника — основанием. По сути, фигура — это частный случай некругового цилиндра.

Кроме основания и граней, в состав стереофигуры входит:

  • высота — прямая, перпендикулярная плоскостям, лежащим у основания многогранника;
  • боковые рёбра — стороны, являющиеся общими для боковых граней;
  • вершины — точки, принадлежащие сразу двум отрезкам и формирующим периметр геометрического тела;
  • диагонали — отрезки, проходящие через 2 вершины, но при этом несвойственные одной грани;
  • диагональные плоскости — пересекающие боковые рёбра и диагональ у основания.

Кроме этого, используются такие понятия, как диагональное и ортогональное сечение. Первое представляет собой параллелограмм, полученный при пересечении призмы и диагональной плоскости. Второе же — пересечение многогранника с плоскостью, перпендикулярной боковому ребру.

В зависимости от расположения стенок и вида основания, призмы разделяют на 3 типа. Прямой называют ту, где все грани — прямоугольники. Если у фигуры в основании находится правильный многоугольник, стереофигура считается правильной. Частным случаем её является полуправильная призма. В ней боковые грани образуют квадраты. Когда же у многогранника основания непараллельные, призму называют усечённой.

Полуправильный многогранник, имеющий 2 параллельных основания в виде правильных n-угольников, равных между собой, чьи грани представляют собой ломаную линию, называют антипризмой. В качестве примера такой фигуры можно привести октаэдр, икосаэдр и восьмиугольный октагон.

Свойства шестигранника

Правильную шестиугольную призму принято обозначать большими латинскими буквами: ABCDEFA1B1C1D1E1F1. Длину основания подписывают маленьким символом a, а длину боковой стороны h. К характеристикам фигуры относят площади основания, боковые грани, полную поверхность, объём многогранника. Всего у геометрического тела 8 граней, 18 рёбер и 12 вершин.

Для успешного вычисления различных параметров фигуры понадобится знать следующие формулы:

Если рассмотреть правильный шестиугольник, лежащий в основе призмы ABCDEF, и провести отрезки AB, CD, EF, у них будет общая точка пересечения. Для удобства обозначить её можно буквой O. Так как, в соответствии со свойствами, треугольники AOB, BOC, COD, DOE, EOF, FOA будут правильными, можно составить равенство: AO = OD = EO = OB = CO = OF = a .

Через точку М можно провести прямую AC и CF. Образованный ранее треугольник AEO будет равнобедренным. В нём отрезок AO равняется по величине OE. Значит, угол EOA будет развёрнутым и равняться 120 градусам. Используя свойства равнобедренного треугольника, можно записать: AE = a * √2 * (1 — cos EOA). То есть: AE = AC = √3 * a.

По аналогии можно найти и стороны: EA1, FB1, AC1, BD1, CE1, DF1. Так как AA1 = h, а из свойств правильной призмы следует, что угол EAA1 — прямой, длины сторон будут равны между собой, и их можно найти, используя формулу: √(AA1 2 + AE 2 )= √(h 2 + 3 * a) = 2 * a. Грань EB1 = FC1 = AD1 = BE1 = CF1 = DA1 = √(BB1 2 + BE 2 ) = √(h 2 + 4 *a) = √5 *a. Сторона FE1 = √(FE 2 + EE 2 ) = √(h 2 + a 2 ) = √2 *a.

Длины диагоналей призмы равняются сумме квадратов высоты и длины основания под корнем. Это легко доказать, если принять, что ЕЕ1 = h, а FE = a. Треугольник FEE1 прямоугольный, значит, FE = √(h 2 + a 2 ), что и следовало доказать.

Решение простого примера

Такого вида задачи обычно даются в учебниках по геометрии для выпускных классов средней школы. Решить их самостоятельно несложно, нужно только знать формулы и представлять, как выглядит та или иная фигура. При этом часто приходится использовать дополнительные построения. Вот один из таких типовых примеров.

Читать еще:  Как работает система выравнивания плитки

Пусть имеется девятиугольная фигура, в которую вписана правильная шестиугольная призма со стандартным обозначением вершин. Сторона основания в ней составляет 4 см, а длина бокового ребра меньше её в 2 раза, то есть равняется 2. Необходимо вычислить расстояние от точки C1 до прямой, соединяющей вершины EF. По условию задачи в основании лежит геометрическое тело, у которого все стороны и углы равны, то есть фигура правильная.

Чтобы понять, что будет представлять искомая прямая, нужно изобразить призму на рисунке и на нём же начертить отрезок. Фактически это будет перпендикуляр, который и является вычисляемым расстоянием. Проекцией точки С1 будет вершина С. Из неё можно построить перпендикуляр, который ограничится точкой E. Таким образом, поставленная задача сводится к поиску длины отрезка C1E.

Найти длину прямой можно как гипотенузу прямоугольного треугольника С1СE. Треугольная фигура будет с прямым углом C. Из условия задачи отрезок С1С в два раза меньше ребра основания, а значит равен 2. Теперь осталось найти, чему равняется длина CE. Геометрическое тело CDE является равнобедренным. По условию CD = ED. Сумму углов шестиугольника можно найти по формуле е = 180 * (n — 2) = 180 * 4 = 720. Получается, что на каждый угол приходится по 120 градусов.

С вершины D можно опустить перпендикуляр DN на CE. Принимая во внимание свойства равнобедренного треугольника, высота DN будет медианной и биссектрисой. Следовательно, угол C равняется 30 градусов, так как CDH — прямоугольный.

Теперь можно найти СH. Сделать это возможно через косинус угла C: cos 30 = CH / CD. Отсюда: CH = 4 * p/2 = 2 √ 3. Так как CH = HE, сторона CE = 2 * 2 √3. К треугольнику CC1E можно применить теорему Пифагора: C1E 2 = C1C 2 + CE = 2 2 + (4 c3) 2 . C1E 2 = √ 52. Таким образом, искомый ответ можно записать так: C1E = 2√13.

Задача высокого уровня

Решение примеров повышенного уровня сложности предполагает не только хорошее понимание изучаемого материала, но и знание предыдущих тем. Понадобится вспомнить формулы для нахождения площадей и объёмов плоских фигур и их свойства. Вот пример одной из таких задач.

Пусть имеется шестиугольная объёмная фигура, у которой баковая грань равняется 6, а площадь основания 12. Нужно найти объём геометрического тела с вершинами в точках A, B1, C1, D1, E1, F1.

В таких задачах перед тем как непосредственно приступить к вычислениям, желательно использовать вспомогательный рисунок. На нём нужно изобразить фигуру в трёхмерной системе координат и подписать все её вершины.

Согласно условию, площадь основания Sabcde1f1 = 12, отрезок AA1 = 6. Так как фигура правильная, то все ребра у призмы буду равны. Чтобы найти, сколько будет составлять объём, понадобится обозначить многогранник. Для этого следует построить отрезки F1B, F1A, B1, E1A, D1A, C1A. Получившаяся фигура представляет собой пирамиду.

Формула для нахождения объёма пирамиды записывается так: V = h * S / 3. Её можно привести к виду: V = (AA1 * Sb1c1d1e1f1) / 3. Теперь нужно определить, чему же будет равняться площадь шестиугольника. Так как в основании призмы лежит правильная фигура с шестью углами, радиус описанной окружности будет совпадать с боковой стороной.

Таким образом, искомая площадь будет равняться шести поверхностям правильного треугольника. В свою очередь, его занимаемый размер можно определить как Sтр = (a * b) * sin / 2. Значит, площадь основания призмы равна: S = (6 * R * R * sin 60) / 2. Подставив заданное условием значение из формулы, можно выразить радиус: R 2 = (12 * 2) / 3 √ 3 = 8 /√3.

Площадь треугольника A1B1F1 находится как произведение сторон, умноженное на синус угла и разделённое на 2: S = (a * a * sin120) / 2 = a 2 * sin60 / 2 = (R 2 * √ 3/3) / 2. Подставив значение R, можно получить: S = (½) * (8 / √ 3) * (√3 / 2) = 2. Тогда площадь пятиугольника будет равняться разнице поверхностей шестиугольника и треугольника A1B1F1, то есть S = 12 — 2 = 10. Теперь можно будет подсчитать и объём пирамиды: Vab1c1d1e1f1 = (1 / 3) * 6 * 10 = 20. Задача решена.

Диагональ правильного шестиугольника формула

На этой странице вы найдете калькуляторы и формулы, которые помогут найти и рассчитать площадь правильного шестиугольника по стороне или радиусам вписанной и описанной окружностей.

Читать еще:  Характеристики стиральных машин с вертикальной загрузкой

Шестиугольник представляет собой многоугольник, к которого все внутренние углы равны 120 градусов, а все стороны равны между собой.

Через сторону

Формула для нахождения площади правильного шестиугольника через сторону:

cdot a^2> > , где a — сторона шестиугольника.

Через радиус вписанной окружности

Формула для нахождения площади правильного шестиугольника через радиус вписанной окружности:

cdot r^2> , где r — радиус вписанной окружности.

Через радиус описанной окружности

Формула для нахождения площади правильного шестиугольника через радиус описанной окружности:

cdot R^2> > , где R — радиус описанной окружности.

Интересные факты

Форму правильного шестиугольника имеют пчелиные соты, сечение гаек и карандашей, кристаллическая решетка графита.

Шестиугольник — это многоугольник, общее количество углов (вершин) которого равно шести.

Выпуклый шестиугольник — это многоугольник, с общим количеством вершин, равным шести, при этом все точки такого шестиугольника лежат по одну сторону от прямой, которая проведена между двумя любыми соседними его вершинами.

Чему равна сумма углов выпуклого шестиугольника?

Сумма углов выпуклого шестиугольника определяется по общей формуле 180°(n-2) и равна 180 ( 6 — 2 ) = 720 градусов. См. теорему о сумме углов многоугольника.

При решении задач для нахождения площади произвольного (неправильного) шестиугольника используют метод трапеций, который заключается в разбиении фигуры на отдельные трапеции, площадь каждой из которых можно найти по известным всем формулам.

Правильный шестиугольник

Правильный шестиугольник — это шестиугольник, все стороны которого равны между собой.

Свойства правильного шестиугольника

  • все внутренние углы равны между собой
  • каждый внутренний угол правильного шестиугольника равен 120 градусам
  • все стороны равны между собой
  • сторона правильного шестиугольника равна радиусу описанной окружности
  • правильный шестиугольник заполняет плоскость без пробелов и наложений
  • всі внутрішні кути рівні між собою
  • кожен внутрішній кут правильного шестикутника дорівнює 120 градусам
  • всі сторони рівні між собою сторона правильного шестикутника дорівнює радіусу описаного кола
  • правильний шестикутник заповнює плоскість без пропусків і накладень

Формулы для правильного шестиугольника

(по порядку следования формул)

  • Радиус описанной окружности (R) правильного шестиугольника равен его стороне (t)
  • Все внутренние углы равны 120 градусам
  • Радиус вписанной окружности (r) равен корню из трех, деленному на два и умноженному на длину стороны t (радиус описанной окружности R)
  • Периметр правильного шестиугольника (P) равен шести радиусам описанной окружности (R) или четыре корня из трех, умноженным на радиус вписанной окружности (r)
  • Площадь правильного шестиугольника равна трем корням из трех пополам, умноженным на квадрат радиуса описанной окружности (R) или квадрат стороны (t); либо площадь правильного шестиугольника равна двум корням из трех, умноженным на квадрат радиуса вписанной окружности (t)

Задача

Найти объем цилиндра, вписанного в правильную шестиугольную призму, каждое ребро которой равно t .

Решение.
Так как высота цилиндра Н равна высоте призмы и равна а , достаточно найти радиус основания цилиндра, который будет равен радиусу окружности, вписанной в правильный шестиугольник.

Знайти об’єм циліндра, вписаного в правильну шестикутну призму, кожне ребро якої дорівнює t .

Рiшення.
Так як висота циліндра Н дорівнює висоті призми і дорівнює а , достатньо знайти радіус основи циліндра, який буде дорівнювати радіусу кола, вписаного в правильний шестикутник.

Пра­виль­ным ше­сти­уголь­ни­ком на­зы­ва­ет­ся ше­сти­уголь­ник, у ко­то­ро­го все сто­ро­ны и углы равны. Пра­виль­ный ше­сти­уголь­ник об­ла­да­ет сле­ду­ю­щи­ми свой­ства­ми.

– Сто­ро­на пра­виль­но­го ше­сти­уголь­ни­ка равна ра­ди­у­су опи­сан­ной во­круг него окруж­но­сти.

– Боль­шая диа­го­наль пра­виль­но­го ше­сти­уголь­ни­ка яв­ля­ет­ся диа­мет­ром опи­сан­ной во­круг него окруж­но­сти и равна двум его сто­ро­нам.

– Мень­шая диа­го­наль пра­виль­но­го ше­сти­уголь­ни­ка в раз боль­ше его сто­ро­ны.

– Угол между сто­ро­на­ми пра­виль­но­го ше­сти­уголь­ни­ка равен 120°.

– Мень­шая диа­го­наль пра­виль­но­го ше­сти­уголь­ни­ка пер­пен­ди­ку­ляр­на его сто­ро­не.

– Тре­уголь­ник, об­ра­зо­ван­ный сто­ро­ной ше­сти­уголь­ни­ка, его боль­шей и мень­шей диа­го­на­ля­ми, пря­мо­уголь­ный, а его ост­рые углы равны 30° и 60°.

Диагональ правильного шестиугольника формула

Шестиугольник — это многоугольник, общее количество углов (вершин) которого равно шести.

Выпуклый шестиугольник — это многоугольник, с общим количеством вершин, равным шести, при этом все точки такого шестиугольника лежат по одну сторону от прямой, которая проведена между двумя любыми соседними его вершинами.

Читать еще:  Как снять подшипник с болгарки без съемника

Чему равна сумма углов выпуклого шестиугольника?

Сумма углов выпуклого шестиугольника определяется по общей формуле 180°(n-2) и равна 180 ( 6 — 2 ) = 720 градусов. См. теорему о сумме углов многоугольника.

При решении задач для нахождения площади произвольного (неправильного) шестиугольника используют метод трапеций, который заключается в разбиении фигуры на отдельные трапеции, площадь каждой из которых можно найти по известным всем формулам.

Правильный шестиугольник

Правильный шестиугольник — это шестиугольник, все стороны которого равны между собой.

Свойства правильного шестиугольника

  • все внутренние углы равны между собой
  • каждый внутренний угол правильного шестиугольника равен 120 градусам
  • все стороны равны между собой
  • сторона правильного шестиугольника равна радиусу описанной окружности
  • правильный шестиугольник заполняет плоскость без пробелов и наложений
  • всі внутрішні кути рівні між собою
  • кожен внутрішній кут правильного шестикутника дорівнює 120 градусам
  • всі сторони рівні між собою сторона правильного шестикутника дорівнює радіусу описаного кола
  • правильний шестикутник заповнює плоскість без пропусків і накладень

Формулы для правильного шестиугольника

(по порядку следования формул)

  • Радиус описанной окружности (R) правильного шестиугольника равен его стороне (t)
  • Все внутренние углы равны 120 градусам
  • Радиус вписанной окружности (r) равен корню из трех, деленному на два и умноженному на длину стороны t (радиус описанной окружности R)
  • Периметр правильного шестиугольника (P) равен шести радиусам описанной окружности (R) или четыре корня из трех, умноженным на радиус вписанной окружности (r)
  • Площадь правильного шестиугольника равна трем корням из трех пополам, умноженным на квадрат радиуса описанной окружности (R) или квадрат стороны (t); либо площадь правильного шестиугольника равна двум корням из трех, умноженным на квадрат радиуса вписанной окружности (t)

Задача

Найти объем цилиндра, вписанного в правильную шестиугольную призму, каждое ребро которой равно t .

Решение.
Так как высота цилиндра Н равна высоте призмы и равна а , достаточно найти радиус основания цилиндра, который будет равен радиусу окружности, вписанной в правильный шестиугольник.

Знайти об’єм циліндра, вписаного в правильну шестикутну призму, кожне ребро якої дорівнює t .

Рiшення.
Так як висота циліндра Н дорівнює висоті призми і дорівнює а , достатньо знайти радіус основи циліндра, який буде дорівнювати радіусу кола, вписаного в правильний шестикутник.

Площадь правильного шестиугольника

Площадь правильного шестиугольника — это число, характеризующее правильный шестиугольник в единицах измерения площади.

Правильный шестиугольник (гексагон) — это шестиугольник, у которого все стороны и углы равны.

[править] Обозначения

a — длина стороны;

r — радиус вписанной окружности;

R — радиус описанной окружности;

α — половинный центральный угол, α=π/6;

P6 — периметр правильного шестиугольника;

SΔ — площадь равнобедренного треугольника с основанием, равным стороне, и боковыми сторонами, равными радиусу описанной окружности;

S6 — площадь правильного шестиугольника.

[править] Формулы

[math]S_6=frac<3sqrt<3>> <2>a^2 Leftrightarrow[/math] [math]Leftrightarrow S_6=6S_, S_=frac> <4>a^2 Leftrightarrow[/math] [math]Leftrightarrow S_6=frac<1> <2>P_6r, P_6=6a, r=frac> <2>a Leftrightarrow[/math] [math]Leftrightarrow S_6=frac<3sqrt<3>> <2>R^2, R=a Leftrightarrow[/math] [math]Leftrightarrow S_6=2sqrt<3>r^2, r=frac> <2>R[/math]

[править] Другие многоугольники

  • Площадь равностороннего треугольника;
  • Площадь квадрата;
  • Площадь правильного пятиугольника;
  • Площадь правильного шестиугольника;
  • Площадь правильного восьмиугольника;
  • Площадь правильного десятиугольника;
  • Площадь правильного двенадцатиугольника;
  • Площадь правильного шестнадцатиугольника;
  • Площадь правильного двадцатиугольника;
  • Площадь правильного n-угольника.
Персональные инструменты
Пространства имён
Варианты
Просмотры
Действия
Поиск
Навигация
Инструменты
  • Последнее изменение этой страницы: 22:47, 12 апреля 2020.
  • К этой странице обращались 1859 раз.

Текст страницы доступен по условиям лицензии GNU Free Documentation License. Материалы могут быть скопированы при условии указания активной ссылки на источник копирования в теле статьи (на той же странице). В отдельных случаях могут действовать условия лицензии Creative Commons Attribution-ShareAlike (CC BY-SA 3.0), информацию об этом можно просмотреть на странице обсуждения или в истории правок. В частности, условия лицензии CC BY-SA 3.0 действуют в отношении статей, перенесенных из Википедии (указание на факт переноса всегда есть в истории правок статьи).

  • Политика конфиденциальности
  • Описание Циклопедии
  • Отказ от ответственности
Ссылка на основную публикацию