rahada.ru

Строительный журнал
7 просмотров
Рейтинг статьи
1 звезда 2 звезды 3 звезды 4 звезды 5 звезд
Загрузка...

Схема регулировки тока в зарядном устройстве

Схемы простых мощных зарядных устройств для аккумуляторов.

Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные на тиристорах, симисторах и мощных полевых транзисторах.

Для начала давайте разомнёмся и забудем про такой параметр, как КПД. Предположим, что есть острое желание зарядить автомобильный АКБ, но нет возможности ввиду полного отсутствия зарядки. Также сделаем предположение, что в хозяйстве затерялись: лампа накаливания на 220 вольт, диодный мост с допустимым током, превышающим ток, при котором мы будем заряжать аккумулятор, либо, на худой конец, просто силовой (выпрямительный) диод с таким же допустимым током и максимальным обратным напряжением — не менее 300В.

Рис.1

Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ, получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора.
Поскольку 220 вольт — это действующее значение переменного напряжения сети, то силу тока, протекающую через АКБ можно рассчитать по простой формуле:
Iзар(А) = Pламп(Вт) / (220 — Uакб)(В) ≈ Pламп(Вт) / 220(В) .
Параллельное соединение двух ламп — удваивает зарядный ток, трёх — утраивает и т. д. до разумной бесконечности.
Схема, изображённая на Рис.1 справа, выдаёт ток, вдвое меньший по сравнению с предыдущей.
Большим преимуществом приведённых схем является возможность зарядки любых аккумуляторов, независимо от собственных значений их напряжений.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.


Рис.2

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.
Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно, имеют реактивную проводимость и не выделяют на себе тепловой мощности.
Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением.

Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства.
Вообще, тиристор — это прибор достаточно капризный и требующий для надёжной работы соблюдения определённого набора условий. Именно поэтому — большинство простейших схем, приведённых в различных источниках, грешат не очень стабильной работой и необходимостью подбора элементов.

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.


Рис.3

Вот что пишет автор:

Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI. VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохранитель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток. Диоды VD1. VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами желательно использовать теплопроводные пасты.
Вместо тиристора КУ202В подойдут КУ202Г — КУ202Е. Проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.
В приборе может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (к примеру, при 24. 26 В сопротивление резистора следует увеличить до 200 Ом).

Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации в нагрузке.

Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном (двухполярном) аналоге тиристора — симисторе.
На Рис.4 приведена схема подобного устройства из вышеупомянутой книги Т. Ходасевича.


Рис.4

Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока — практически от 0 до 10А и может быть использовано для зарядки различных аккумуляторов на напряжение 12В.
В основу устройства положен симисторный регулятор с маломощным диодным мостом VD1-VD4 и резисторами R3 и R5. После подключения устройства к сети при плюсовом её полупериоде начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединённые резисторы R1 и R2. При минусовом полупериоде — через те же R1 и R2, диод VD2 и резистор R5. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется лишь полярность его зарядки. Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1.При этом симистор открывается. В конце полупериода симистор закрывается. описанный процесс повторяется в каждом полупериоде сети.
Общеизвестно, что управление симистором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса.
Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора. В описываемом зарядном устройстве такими резисторами являются резисторы R3 и R5, которые в зависимости от полярности полупериода сетевого напряжения поочерёдно подключаются параллельно первичной обмотке трансформатора.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Этот же резистор формирует импульсы разрядного тока, которые продлевают срок службы АКБ.

Читать еще:  Простая схема импульсного блока питания

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.

Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).

Рис.5

Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом — обязательно. В качестве нагрузки выступает первичная обмотка сетевого трансформатора.

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6) и позволяющий регулировать скважность импульсов, буферный усилитель — инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий элемент — полевой транзистор VT1.
При указанных на схеме номиналах элементов частота генератора — около 13 кГц. Так как сопротивление открытого канала транзистора VT1 очень мало (0,017 0м) и работает он в переключательном режиме, при токе зарядки до 5 А транзистор практически не нагревается — рассеиваемая тепловая мощность не превышает 0,55 Вт.
В качестве понижающего использован сетевой трансформатор габаритной мощностью 150 Вт с вторичной обмоткой, обеспечивающей постоянное напряжение 16. 17 В на конденсаторе С1 и зарядный ток до 6 А.
Выпрямительный мост собран на диодах Шоттки, VD1 — сдвоенный SBL4045PT, a VD2 и VD3 — одиночные 10TQ045.
Если вторичную обмотку сетевого трансформатора намотать с отводом от середины, число диодов в выпрямителе и тепловыделение от них можно уменьшить вдвое.
Чертёж платы представлен на Рис.7.

Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его замена транзистором IRFZ44N.
Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается в эффективном отведении тепла при увеличении тока нагрузки до 5 А.

Обзор схем зарядных устройств автомобильных аккумуляторов

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Читать еще:  Обозначение диаметров труб на чертежах

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Зарядное устройство для автомобильного аккумулятора своими руками

Зарядное устройство (ЗУ) для аккумулятора необходимо каждому автолюбителю, но стоит оно немало, а регулярные профилактические поездки в автосервис не выход. Обслуживание батареи в СТО требует времени и денег. Кроме того, на разряженном аккумуляторе до сервиса ещё нужно доехать. Собрать своими руками работоспособное зарядное устройство для автомобильного аккумулятора своими руками сможет каждый, кто умеет пользоваться паяльником.

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11.6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

Самодельные зарядки для АКБ

Собрать своими руками зарядное устройство для автомобильного аккумулятора реально и не особо сложно. Для этого нужно иметь начальные знания по электротехнике и уметь держать в руках паяльник.

Простое устройство на 6 и 12 В

Такая схема самая элементарная и бюджетная. При помощи этого ЗУ вы сможете качественно зарядить любой свинцовый аккумулятор с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч.

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4. Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

К примеру, если необходим ток в 5 А, то понадобится включить тумблеры S4 и S2. Замкнутые S5, S3 и S2 дадут в сумме 11 А. Для контроля напряжения на АКБ служит вольтметр PU1, за зарядным током следят при помощи амперметра PА1.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 см. кв.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

Схема проста, если собрать её из исправных деталей, то в налаживании не нуждается. Это устройство подойдёт и для зарядки шестивольтовых батарей, но «вес» каждого из переключателей S2-S5 будет иным. Поэтому ориентироваться в зарядных токах придётся по амперметру.

С плавной регулировкой тока

По этой схеме собрать зарядник для аккумулятора автомобиля своими руками сложнее, но она возможна в повторении и тоже не содержит дефицитных деталей. С её помощью допустимо заряжать 12-вольтовые аккумуляторы ёмкостью до 120 А/ч, ток заряда плавно регулируется.

Зарядка батареи производится импульсным током, в качестве регулирующего элемента используется тиристор. Помимо ручки плавной регулировки тока, эта конструкция имеет и переключатель режима, при включении которого зарядный ток увеличивается вдвое.

Режим зарядки контролируется визуально по стрелочному прибору RA1. Резистор R1 самодельный, выполненный из нихромовой или медной проволоки диаметром не менее 0.8 мм. Он служит ограничителем тока. Лампа EL1 — индикаторная. На её месте подойдёт любая малогабаритная индикаторная лампа с напряжением 24–36 В.

Читать еще:  Чертеж вид сверху сбоку спереди

Понижающий трансформатор можно применить готовый с выходным напряжением по вторичной обмотке 18–24 В при токе до 15 А. Если подходящего прибора под рукой не оказалось, то можно сделать самому из любого сетевого трансформатора мощностью 250–300 Вт. Для этого с трансформатора сматывают все обмотки, кроме сетевой, и наматывают одну вторичную обмотку любым изолированным проводом с сечением 6 мм. кв. Количество витков в обмотке — 42.

Тиристор VD2 может быть любым из серии КУ202 с буквами В-Н. Его устанавливают на радиатор с площадью рассеивания не менее 200 см. кв. Силовой монтаж устройства делают проводами минимальной длины и с сечением не менее 4 мм. кв. На месте VD1 будет работать любой выпрямительный диод с обратным напряжением не ниже 20 В и выдерживающий ток не менее 200 мА.

Налаживание устройства сводится к калибровке амперметра RA1. Сделать это можно, подключив вместо аккумулятора несколько 12-вольтовых ламп общей мощностью до 250 Вт, контролируя ток по заведомо исправному эталонному амперметру.

Из компьютерного блока питания

Чтобы собрать это простое зарядное устройство своими руками, понадобится обычный блок питания от старого компьютера АТХ и знания по радиотехнике. Но зато и характеристики прибора получатся приличными. С его помощью заряжают батареи током до 10 А, регулируя ток и напряжение заряда. Единственное условие — БП желателен на контроллере TL494.

Для создания автомобильной зарядки своими руками из блока питания компьютера придётся собрать схему, приведённую на рисунке.

Пошагово необходимые для доработки операции будут выглядеть следующим образом:

  1. Откусить все провода шин питания, за исключением жёлтых и чёрных.
  2. Соединить между собой жёлтые и отдельно чёрные провода — это будут соответственно «+» и «-» ЗУ (см. схему).
  3. Перерезать все дорожки, ведущие к выводам 1, 14, 15 и 16 контроллера TL494.
  4. Установить на кожух БП переменные резисторы номиналом 10 и 4,4 кОм — это органы регулировки напряжения и тока зарядки соответственно.
  5. Навесным монтажом собрать схему, приведённую на рисунке выше.

Если монтаж выполнен правильно, то доработку закончена. Осталось оснастить новое ЗУ вольтметром, амперметром и проводами с «крокодилами» для подключения к АКБ.

В конструкции возможно использовать любые переменные и постоянные резисторы, кроме токового (нижний по схеме номиналом 0.1 Ом). Его рассеиваемая мощность — не менее 10 Вт. Сделать такой резистор можно самостоятельно из нихромового или медного провода соответствующей длины, но реально найти и готовый, к примеру, шунт от китайского цифрового тестера на 10 А или резистор С5−16МВ. Ещё один вариант — два резистора 5WR2J, включённые параллельно. Такие резисторы есть в импульсных блоках питаниях ПК или телевизоров.

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

  1. Все свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
  2. В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
  3. Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
  4. Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
  5. Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14.7 В.
  6. Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

ЗУ на 12 В с регулируемым зарядным током

Как всегда неожиданно пришли холода и снова пришло понимание, что нужно купить для аккумулятора машины зарядный выпрямитель. Все знают, что мороз не нравится батареям, а потому подзаряжать их от сети 220 В приходится чаще. Решено было не инвестировать в дешевые китайские автозарядки из супермаркетов, а попытаться что-то сделать самому.

Зарядное устройство должно заряжать / перезаряжать аккумулятор в автомобиле и на мотоцикле. Предполагалось также, что регулировка тока зарядки будет относительно простой в исполнении, потому что не каждый понимает настройки всяких там HTRC T240. Чтобы плавно настраивать ток, можно использовать эту очень простую схему:

Здесь используются обычные резисторы 0.125 Вт, но решено было поставить 0.5 Вт, из-за высокого напряжения. Также добавлен в схему также второй предохранитель на вторичной стороне трансформатора (10 A) на всякий случай, конденсатор фильтра 2200 мкФ 25 В и вольтметр со шкалой до 20 вольт. Диодный мост KBPC2510. Остальное, как на принципиальной схеме.

Выбор трансформатора для зарядного

В гараже нашелся какой-то старый советский трансформатор 15 В 120 VA и решено было использовать именно его в качестве основы для сборки выпрямителя.

В целом выпрямитель работает очень хорошо. После подключения лампы H4 55/60w напряжение падает примерно до 12 В, и это тоже неплохо. Это первый вариант зарядного, во втором (сделанном на заказ) использовался тороидальный трансформатор 100W 11V 9A (предназначенный для питания галогенок), и после выпрямителя там получалось более 15 В на конденсаторе. Теоретически достаточно подключить к цепи вторичного питания (после диодов моста) конденсатор около 100 мкФ / 25 В и измерить напряжение на нем, если оно достигнет 16-17 В все нормально и вы можете безопасно построить на этом трансформаторе ЗУ к АКБ.

Важно: трансформатор должен давать номинальное напряжение 12 В при нагрузке, а не 12 В на холостом ходу — это напряжение слишком низкое. Если мы используем двухтактный выпрямитель — напряжение будет около 16 В. Использование диодов Шоттки даст еще больше прирост — до 17 В. Напряжение сетки также важно — если намного меньше 220 В — не будем иметь достаточного напряжения.

Если при нагрузке напряжение падает до 12-13 В, батарея не будет полностью заряжена. Для выпрямителя требуемое напряжение составляет около 16 В! Хотя правильное зарядное напряжение — 13,8 В — 14,4 В, рекомендуется с учётом просадки на пару вольт подавать выше.

Естественно при управлении симистором в первичной обмотке присутствует постоянная составляющая тока, приводящая к насыщению сердечника и многим другим нежелательным явлениям, таким как гудение трансформатора. Большинство трансформаторов, питающихся таким образом, имеют более-менее проявляющиеся подобные симптомы, но лишь немногие не подходят вообще. В конце концов их можно устранить или заметно ослабить (силовые резисторы). Или вообще изменить тип контроля зарядного тока на такой.

Ссылка на основную публикацию