rahada.ru

Строительный журнал
5 просмотров
Рейтинг статьи
1 звезда 2 звезды 3 звезды 4 звезды 5 звезд
Загрузка...

Схема датчика уровня воды в баке

Датчик уровня воды: устройство и принцип действия

В промышленности и быту постоянно существует необходимость контроля за уровнями жидкостей в емкостях. Устройства измерения классифицируют как контактные и бесконтактные. Для обоих вариантов датчик уровня воды располагают на определенной высоте резервуара, и он срабатывает, сигнализируя или подавая команду на изменение режима ее подачи.

Контактные устройства работают на основе поплавков, переключающих схемы при достижении жидкостью заданных отметок.

Бесконтактные способы подразделяются на магнитные, емкостные, ультразвуковые, оптические и другие. Устройства не имеют подвижных частей. Они погружаются в контролируемые жидкие или сыпучие среды или закрепляются на стенках баков.

Поплавковые датчики

Надежные и дешевые устройства для контроля уровня жидкостей с помощью поплавков наиболее распространены. Конструктивно они могут различаться. Рассморим их виды.

Вертикальное расположение

Часто применяется поплавковый датчик уровня воды с вертикальным штоком. Внутри него размещен круглый магнит. Шток представляет собой полую пластиковую трубку с расположенными внутри герконами.

Электрические схемы с герконами могут отличаться при внешнем сходстве механической части. Датчики располагаются на одном, двух и большем количестве уровней, подавая сигнал о том, насколько наполнен бак. Они также могут быть линейными, непрерывно передавая сигнал.

Горизонтальное расположение

Если сверху датчик установить не удается, его крепят горизонтально к стене резервуара. Магнит с поплавком устанавливают на рычаге с шарниром, а геркон помещают в корпусе. При подъеме жидкости в верхнее положение магнит подходит к коннтактам и датчик срабатывает, сигнализируя о достижении предельного положения.

При повышенной загрязненности или замерзании жидкости применяется более надежный поплавковый датчик уровня воды на гибком тросе. Он состоит из размещенной на глубине небольшой герметичной емкости с металлическим шариком с герконовым контактом или тумблером внутри. При совпадении уровня воды с положением датчика происходит переворот емкости и срабатывание контакта.

Одними из самых точных и надежных поплавковых датчиков являются магнитострикционные. Они содержат поплавок с магнитом, которые скользят по металлическому стержню. Принцип работы заключается в изменении продолжительности прохождения через стержень ультразвукового импульса. Отсутствие электрических контактов существенно повышает четкость срабатывания при достижении границы раздела сред заданного положения.

Емкостные датчики

Бесконтактное устройство реагирует на разницу между диэлектрической проницаемостью разных материаллов. Датчик уровня воды в резервуаре устанавливается снаружи боковой стенки емкости. В этом месте должна быть вставка из стекла или фторопласта, чтобы через нее можно было различить границу раздела сред. Расстояние, на котором чувствительный элемент улавливает изменение контролируемой среды, составляет 25 мм.

Герметичное исполнение емкостного датчика дает возможность помещать его в контролируемую среду, например, в трубопровод или в крышку резервуара. При этом он может находиться под давлением. Таким образом поддерживается наличие жидкости в закрытом реакторе при осуществлении технологического процесса.

Электродные датчики

Датчик уровня воды с помещенными в жидкость электродами реагирует на изменение электропроводности между ними. Для этого их крепят зажимами и размещают на предельно верхнем и нижнем уровнях. С более длинным в паре устанавливают еще один проводник, но обычно вместо него используют металлический корпус резервуара.

Схема датчика уровня воды соединяется с системой управления электродвигателем насоса. При полном баке все электроды погружены в жидкость и между ними протекает ток управления, который является сигналом на отключение двигателя водяного насоса. Вода также не поступает, еслти она не касается оголенного верхнего проводника. Сигналом включения насоса является снижение уровня ниже длинного электрода.

Проблемой всех датчиков является окисление контактов, находящихся в воде. Чтобы уменьшить его влияние, применяют нержавеющую сталь или графитовые стержни.

Датчик уровня воды своими руками

Простота устройства дает возможность изготовить его самостоятельно. Для этого нужен поплавок, рычаг и клапан. Вся конструкция размещается в верхней части бака. Поплавок с рычагом соединяется со штоком, перемещающим поршень.

При достижении водой верхнего предельного уровня поплавок перемещает рычаг, который воздействует на поршень и закрывает подачу через нижнюю трубу.

По мере расхода воды поплавок опускается, после чего поршень снова открывает отверстие, через которое можно опять наполнять резервуар.

При правильном выборе и изготовлении датчик уровня воды, своими руками собранный, надежно работает в домашнем хозяйстве.

Заключение

Датчик уровня воды незаменим в частном секторе. С ним не теряется время при контроле за наполнением бака на огороде, уровнем в колодце, скважине или септике. Простое устройство без помощи хозяина вовремя запустит или отключит водяной насос. Только не стоит забывать о его профилактике.

Схема автомата-контроллера уровня воды в емкости (К561ЛЕ10)

Схема позволяет выполнять автоматический контроль и поддержание в наполненном водою состоянии резервуара или водонапорной башни. Она не сложна в изготовлении и не содержит дефицитных радиоэлектронных компонентов. С изготовлением и настройкой справится даже начинающий радиолюбитель или мастер.

Схема автомата

Этот автомат предназначен для поддержания уровня воды в резервуаре,не допуская его опустошения и переполнения. Датчики контактные, замыкающиеся через сопротивление воды, сделанные из шампуров для шашлыка из пищевой нержавеющей стали. Всего три щупа, Е1, Е2 и ЕЗ.

Общим является ЕЗ, он опущен в резервуар до минимального уровня воды. Так же расположен и щуп Е2, контролирующий минимальный уровень (нижний уровень воды). Щуп Е1 самый короткий, он расположен на максимальном уровне (верхний уровень воды).

Кнопки S1 и S2 служат для ручного управления насосом. Конденсатор С1 принуждает схему к выключенному состоянию насоса в момент подачи на схему питания.

В основе схемы RS-триггер на элементах микросхемы D1. Когда в котле уровень воды ниже минимального ни один из щупов не касается воды. При этом на выходе элемента D1.3 логическая единица, которая устанавливает триггер в состояние единицы.

Читать еще:  Ажурное выпиливание ручным лобзиком чертежи узоры

Напряжение высокого логического уровня с выхода D1.1 проходит на базу транзистора VT1 и открывает его. Реле К1 замыкает контакты и подключает к сети погружной насос. Начинается пополнение котла.

Рис. 1. Принципиальная схема автоматического контроллера за уровнем воды в резервуаре или в водонапорной башне.

Постепенно уровень воды поднимается и достигает щупов ЕЗ и Е2. На выходе D1.3 устанавливается логический ноль, но триггер остается в единичном состоянии и накачка воды продолжается.

С дальнейшим заполнением вода достигает максимального уровня, при котором намокает щуп Е1. Через сопротивление воды ЕЗ-Е1 напряжение высокого логического уровня от положительной шины питания поступает на вывод 1 D1.1. Триггер переключается в нулевое состояние. Напряжение на выходе D1.1 падает до низкого логического уровня.

Транзистор VT1 закрывается и реле К1 выключает насос.

Когда происходит отток воды из котла в систему водопровода, уровень воды начинает снижаться. Сначала обсыхает щуп Е1. Но насос еще не включается. Включение насоса происходит при обсыхании щупа Е2. То есть, насос включается, когда оба щупа Е1 и Е2 сухие (не контактируют с водой), а выключается когда они погружены.

В промежуточных положениях установившееся состояние не меняется. Это позволяет очень существенно уменьшить частоту включения и выключения насоса, что благоприятно сказывается на его ресурсе.

Кнопки S1 и S2 служат для ручного управления. Кнопкой S1 можно включить подачу воды раньше чем обсохнет щуп Е2. Кнопкой S2 можно выключить подачу воды. Если кнопка S2 будет с фиксацией, включив её можно полностью заблокировать насос.

Конденсатор С1 в момент включения питания устанавливает триггер в ноль, чтобы насос сам не включился из-за сбоя при перебоях в электропитании.

Схема питается от сети через маломощный силовой трансформатор Т1. Это китайский трансформатор марки «ALG» с вторичной обмоткой 9-0-9V на ток не ниже 150мА. Средний отвод обмотки не используется. На выходе моста VD2 на конденсаторе СЗ выделяется напряжение около 22-24V.

Номинальным напряжением питания обмотки реле F40.51 является 24V, но уверенное срабатывание начинается уже с 15-16V. Диод VD3 защищает транзистор от выброса ЭДС самоиндукции обмотки реле.

Микросхема питается напряжением 13V от параметрического стабилизатора на стабилитроне VD1 и резисторе R6. Последовтельно R6 включен индикаторный светодиод HL1, индицирующий включенное состояние схемы. Светодиод HL2 индицирует включенное состояние насоса.

Питание схемы

Источник питания можно сделать и по другой трансформаторной схеме. Необходимо чтобы на выходе выпрямителя было постоянное напряжение обеспечивающее уверенное срабатывание реле. Например, если реле с обмоткой на 12V, то и напряжение питания можно опустить до 12V.

Источник питания, каким бы он ни был, обязательно должен обеспечивать гальваническую развязку между электросетью и низковольтными цепями. В противном случае это может привести к поражению электрическим током. По этой же причине нельзя использовать вместо реле ключевые тиристорные или транзисторные схемы с гальванической связью с схемой управления (можно только при управлении через оптопару).

Детали

Микросхему К561ЛЕ10 можно заменить на К176ЛЕ10. Стабилитрон на КС512, КС513. Светодиоды — индикаторные постоянного свечения (не мигающие) любого типа, марки и цвета. Диодный мост КЦ407 можно заменить практически любым или сделать его практически на любых диодах общего применения.

Диод VD2 — практически любой кремниевый диод малой или средней мощности. Транзистор КТ315Е можно заменить любым транзистором п-р-п общего назначения, например, КТ3102, КТ315, МП35. Реле F40.51 можно заменить любым реле с обмоткой на 24V, контакты которого подходят под мощность насоса. Если использовать реле с обмоткой на меньшее напряжение, нужно последовательно обмотке включить резистор, на котором будет падать избыток.

Например, при обмотке на 12V сопротивление такого резистора должно равняться сопротивлению обмотки реле постоянному току. Если ток обмотки реле более 80 мА нужно переделать ключ на VT1 под соответствующий ток, возможно, сделать этот каскад на составном транзисторе или на полевом мощном транзисторе.

При использовании вместо реле симисторной оптопары светодиод оптопары включается вместо обмотки реле через токоограничительный резистор, сопротивлением соответственно номинальному току через светодиод этой оптопары.

Монтаж

Монтаж электронной схемы выполнен на макетной печатной плате. Электронный блок располагается недалеко от резервуара, чтобы провода соединяющие с ним щупы датчиков уровня были не длиннее одного метра.

Один важный момент, — общий провод электронной схемы не должен выходить за её пределы, то есть, его нельзя заземлять или соединять с какими-то нибыло металлическими предметами, вроде водопроводных труб или корпуса резервуара, если резервуар не пластмассовый, а металлический.

Налаживание

При налаживании может потребоваться подбор сопротивления резисторов R1 и R3. Вообще, желательно выбрать сопротивления этих резисторов минимальными, плюс 20-30% к той величине, при которой схема уверенно работает.

Сопротивление этих резисторов зависит от удельного сопротивления конкретной воды. Конкретной, потому что в различных источниках, колодцах, скважинах может отличаться солевой состав воды, а от этого как раз и зависит удельное сопротивление воды в конкретном случае. Так как в течение года этот состав может меняться, нужно сделать некоторый запас по сопротивлению резисторов R1 и R3 на эти самые 20-30%.

В то же время, слишком большое сопротивление резисторов выбирать не желательно, так как схема может начать реагировать на конденсат на верхней стенке резервуара.

Указатель уровня воды своими руками

Схема указателя уровня воды.

Схема очень простая, но работает прекрасно. В конце статьи будет видео, где наглядно показана работа этого указателя уровня воды, который мы сделаем вместе с вами.
Для начала работы соберём детали, которые нам потребуются для изготовления устройства.

Читать еще:  Мангалы из газовых баллонов чертежи

Детали для изготовления схемы указателя уровня воды.

Нам понадобится:
Микросхема ULN2004 или ей подобная, контактная площадка для установки микросхемы на плату. При наличии такой площадки отсутствует риск перегреть ножки микросхемы паяльником или повредить её внутреннее устройство статическим электричеством. Да и ремонт схемы, при необходимости, сокращается до нескольких секунд. Достаточно вынуть из гнезда горелую микросхему и вставить на её место новую. Сплошная выгода, особенно для не очень опытных радиолюбителей.
Резисторы R1 — R7 — 47Kom.
R8 — R14 — 1Kom.
Светодиоды любого цвета по вашему выбору, диаметром 3 — 5 мм.
Конденсатор 100Mkf 25v.
Клеммные колодки любого типа, а можно и вообще без них, но удобство пользования устройством несколько снизится.
Макетная плата любая, лишь бы все компоненты влезли. Я пользуюсь такими платами, потому что не хочется заморачиваться на изготовление печатной платы, просто так мне удобнее и более привычно.

Компоненты все собрали и приступаем к изготовлению нашего устройства.

Это первый готовый элемент будущей системы очистки воды от железа, бактерий, всяческих вредных примесей и прочей «каки». Система у меня дома работает уже почти три года, показала себя как надёжная, удобная и вообще мне нравится. Качеством воды полностью доволен. Но настало время для модернизации. Появились новые требования (у меня), хочется чтобы было более удобное обслуживание, хочу чтобы вся информация о работе системы была постоянно перед глазами. Первую систему очистки воды я строил без всякого опыта и допустил некоторые ошибки, о которых непременно напишу в следующих статьях, но в целом было всего две незначительных поломки. В одной поломке виноват я, а в другой не качественное комплектующее изделие (опять я виноват, немного сэкономил и купил не то, что следовало).

Всё оборудование будет блочным (так возрастают возможности модернизации и упрощается ремонт), по возможности дешёвым и простым, чтобы многие могли повторить.

Для чего нужны белые проводки расскажу в одной из следующих статей.
Указатель (сигнализатор) уровня воды готов.

Кабель, который идёт к датчикам уровня, можно поставить любой восьмижильный сигнальный, их продают сейчас всякие и в разных магазинах, которые занимаются сигнализацией, электрикой. Сечение жил и длина кабеля не играют особой роли. Есть кабели совсем тоненькие и дешёвые.

Как изготовить датчики уровня, нужно думать и изготавливать по месту применения. Контакты датчика выполнить лучше всего из нержавейки. Плюсовой общий электрод нужен массивный. Я делал из маленькой нержавеющей ложки, электрод работает нормально и совсем не поддаётся электрохимическому растворению. Места где припаиваются провода к электродам, лучше всего заизолировать при содействии любого клеевого пистолета (надёжно сохраняются от растворения).

Впрочем, если запитать схему посредством кнопки без фиксации, то растворения не будет. Нужно посмотреть, сколько воды — нажал на кнопку. Отпустил и питание схемы выключилось. На даче питание схемы можно применить от батареек или пальчиковых аккумуляторов, соединённых последовательно, и с кнопкой (хватит на длительный период) или от старенького аккумулятора. Данное устройство не требовательно к напряжению питания.

Делитесь, пожалуйста, в социальных сетях, если вам не жалко, может быть кому – то тоже пригодится эта простая, но нужная в хозяйстве вещь.
Смотрите видео испытания уровня воды.

Схема управления (отключения) насосом по уровню воды (на откачку воды и на налив)

Зачастую бывает мало иметь только насос для откачки или пополнения воды, еще необходимо и управлять им, то есть включать и включать вовремя. Все бы ничего если подобные процессы у вас запланированы, а если нет, то как же быть? Скажем, у вас есть погреб, где вода прибывает… Или обратная ситуация. Есть бак, который должен быть всегда полный, готов для полива. В течение дня вода согревается, а вечером вы поливаете. Так вот, за тем и другим необходимо постоянно следить, а это все время, заботы, ваши труды. Но в наш век такие задачи уже решаются на раз-два, то есть можно автоматизировать процесс. В итоге, автоматика будет все выполнять за вас, накачивать или откачивать воду, а вам лишь останется очень редко следить за ней. Проверять ее работоспособность. Что же, моя статья как раз и будет посвящена такой теме как реализация схемы по откачки или накачке воды по уровню, далее расскажуоб этом более подробно и предметно.

Схема управления (отключения) насосом на откачку воды по уровню

Начну со схемы по откачке воды, то есть когда перед вами стоит задача откачивать воду до определенного уровня, а затем отключать насос, чтобы он не работал на холостом ходу. Взгляните на схему ниже.

Именно такая принципиальная электрическая схема способна обеспечить откачку воды, до заданного уровня. Давайте разберем принцип ее работы, что здесь и зачем.

Итак, представим что вода пополняет наш резервуар, не важно что это ваше помещение, погреб или бак… В итоге, когда вода доходит до верхнего геркона SV1, то на катушку управляющего реле Р1 подается напряжение. Его контакты замыкаются, и через них происходит параллельное подключение геркону. Таким образом реле самоподхватывается. Также включается и силовое реле Р2, которое коммутирует контакты насоса, то есть насос включается на откачку. Далее уровень воды начинает понижаться и доходит до геркона SV2, в этом случае замыкается он и подает положительный потенциал на обмотку катушки. В итоге, на катушке с двух сторон оказывается положительный потенциал, ток не идет, магнитное поле реле ослабевает — реле Р1 отключается. При отключении Р1 отключается и подача питания для реле Р2, то есть насос тоже перестает откачивать воду. В зависимости от мощности насоса, вы можете подобрать реле на необходимый вам ток.
Я ничего не сказал о резисторе 200 Ом. Он необходимо для того, чтобы в процессе включения геркона SV2 не произошло короткого замыкания с минусом, через контакты реле. Резистор лучше всего подобрать такой, чтобы он позволял уверенно срабатывать реле Р1, но был при этом максимально большого возможного потенциала. В моем случае это было 200 Ом. Еще одной особенность схемы является применение герконов. Их плюс при применении очевиден, они не контактируют с водой, а значит, на электрическую схему не будут влиять возможные изменения токов и потенциалов при различных жизненных ситуациях, будь то вода соленая или грязная… Схема будет работать всегда стабильно и «без осечек». Не требуется настройки схемы, все работает сразу, при правильном соединении.

Читать еще:  Варистор обозначение на схеме

Спустя 2 месяца.

Теперь о том, что было сделано пару месяцев спустя, исходя из требований к уменьшению потребления питания в режиме ожидания. То есть это уже вторая версия всего того, о чем я рассказали выше.
Сами понимаете, что согласно схемы выше будет включен постоянно блок питания на 12 вольт, который между прочим тоже потребляет не бесплатное электричество! А исходя из этого было принято решение сделать схему для срабатывания насоса для откачки или налива воды с током в режиме ожидания равным 0 мА. На самом деле реализовать это оказалось легко. Взгляните на схему ниже.

Первоначально в схеме все цепи разомкнуты, а значит она потребляет наши заявленные 0 мА, то есть ничего. Когда же замыкается верхний геркон, то напряжение через трансформатор и диодный мостик включает реле Р1. Таким образом реле коммутирует через свои контакты и резистор 36 Ом питание на блок питание и опять на саму себя же, то есть самоподхватывается. Насос включается. Далее, когда уровень воды доходит до низа и срабатывает реле Р2, то оно разрывает ту саму цепь самоподхватывания реле Р1, таким образом обесточивая всю схему и приводя его в режим ожидания. Резистор 36 Ом служит для того, чтобы во время включения верхнего геркона ограничить ток на насос, хотя бы немного. Тем самым снизив индукционный ток на герконе и продлив его жизнь. Когда же блок питания будет запитан уже через реле Р1, после его срабатывание, то такое сопротивление без проблем обеспечит напряжение для удержания реле, то есть будет не критично, а во вторых не будет греться, так как через него будет протекать незначительный ток. Это лишь ток от потерь в обмотке и ток на питание реле Р1. Поэтому требования к резистору не критичны, разве что взять его помощнее!
Осталось сказать о том, что в любой из этих схем могут использоваться не только геркон, но и просто концевые датчики.

Что же, теперь давайте разберем обратную ситуацию, когда необходимо воду наоборот закачивать в бак и отключать при высоком уровне в нем. То есть насос включается при низком уровне воды, а выключается при высоком.

«+» — простота сборки и не требует наладки. Не потребляет ток в режиме ожидания!
«-» — В системе имеется концевой датчик работающий с высоким напряжение, поэтому лучше его вынести за пределы воды

Схема управления (отключения) насосом на налив воды по уровню

Если вы охватите нашу статью всю бегло и разом своим взглядом, то заметите, что второй схемы мы просто напросто в статье я не привел, кроме той, что выше.

На самом деле, это само собой разумеющийся факт, ведь чем по сути отличается схема откачивания от схемы накачивания, разве что тем, что герконы расположены один снизу второй внизу. То есть если переставить местами герконы, или переподключить контакты к ним, то одна схема превратиться в другую.

Резюмирую, что для того чтобы переделать вышеприложенную схему в схему по накачке воды, поменяйте местами герконы. В итоге, насос будет включать от нижнего датчика – геркона SV1, а отключаться на верхнем уровне от геркона SV2.

Реализация установки герконов в качестве концевых датчиков для срабатывания насоса в зависимости от уровня воды

Кроме электрической схемы, вам необходимо будет сделать и конструкцию обеспечивающую замыкание герконов, в зависимости от уровня воды. Я со свой стороны могу предложить вам парочку вариантов, которые будут удовлетворять таким условиям. Взгляните на них ниже.

В первом случае реализована конструкция с использованием нити, троса. Во втором жесткая конструкция, когда магниты установлены на стержне, плавающем на поплавке. Описывать элементы каждой из конструкций особого смысла нет, здесь в принципе и так все предельно понятно.

Подключение насоса по схеме срабатывания в зависимости от уровня воды в баке – подводя итоги

Самое главное, это то, что данные схема очень проста, не требует наладки и повторить ее может практически любой, даже не имея опыта работы с электроникой. Второе, схема очень надежная и потребляет минимальную мощность в режиме ожидания (1 вариант) или вовсе ничего (2 вариант), так как все ее цепи разомкнуты. Это значит, что потребление будет ограничиваться лишь потерями тока в блоке питания (1 вариант) или того менее!

Видео о работе датчиков уровня для накачивания и откачивания воды

Ссылка на основную публикацию