rahada.ru

Строительный журнал
14 просмотров
Рейтинг статьи
1 звезда 2 звезды 3 звезды 4 звезды 5 звезд
Загрузка...

Lm324 схема включения как работает

LM324 схема

В одном корпусе микросборки расположено сразу четыре операционных усилителя. Изготавливается в корпусах типа SOIC и DIP.

Основные технические характеристики ОУ LM324

Аналоги операционного усилителя LM324: 1401УД2, 1435УД2, GL324, HA17324, IR3702, LA6324, MB3614, SG324N, TDB0124, UA324, ULN4336N

Типовые схемы включения LM324:

Еще целую кучу схем типового включения им еется в справочном руководстве, по ссылке выше.

Схему датчика движения можно условно поделить на три составные части: усилитель сигнала с него два компаратора и пироэлектрический датчик PIS209S работающий на принципах генерации электрических зарядов в кристалле под воздействием теплового (инфракрасного) излучения,.

Что самое приятное что почти все это уже имеется в микросхеме LM324

Пироэлектрический датчик состоит из пластины пироэлектрика по бокам которой сделаны металлические обкладки, которые напоминают конденсатор. На одной из обкладок имеется вещество, принимающее тепловое излучение. Как только оно вызывает пироэлектрический эффект и напряжение между обкладками увеличивается. Это напряжение приложено к затвор – исток униполярного транзистора, встроенного в датчик.

Поэтому сопротивление канала транзистора снижается. VT1 нагружен на внешнее нагрузочное сопротивление (нет на рисунке), с которого и снимается генерируемый сигнал. Сопротивление R1 предназначено для разрядки обкладок емкости пироэлектрического датчика.

На трех операционных усилителях собраны компараторы напряжения. Их инверсные входы подсоединены к резисторному делителю напряжения, собранного на резисторах R1 и R2, через который на схему идет контролируемое напряжение.

На неинвертирующие входы операционных усилителей поступает опорное напряжение с делителя, выполненного на сопротивлениях R3 — R15. Если на входе вольтметра отсутствует напряжение, то на выходах ОУ будет высокий уровень сигнала и на выходах логических элементов будет логический ноль, поэтому светодиоды не светятся.

При поступление на вход светодиодного индикатора измеряемого напряжения, на определенных выходах компараторов ОУ установится низкий логический уровень, соответственно на светодиоды поступит высокий логический уровень, в результате чего загорится соответствующий светодиод. Для предотвращения подачи уровня напряжения на входе устройства имеется защитный стабилитрон на 12 вольт.

Чтобы максимально упростить самодельную конструкцию, информация о степени разряда батареи поступает по принципу светодиодного столбика, то есть чем выше напряжение на батареи, тем больше светодиодов загорается. Нижний уровень отмечается красным светодиодом (верхний по схеме), на максимальное напряжение указывает нижний зеленый светодиод. Полное отсутствие свечения говорит о сильной критическом разряде аккумулятора.

В основе конструкции лежат четыре компаратора операционного усилителя LM324, каждый из них контролирует определенный уровень напряжения.

Опорное напряжение в 5 вольт для всех четырех компараторов идет со стабилитрона и сопротивления R6.

Если на прямом входе ОУ потенциал будет меньше потенциала на его инверсном входе, на выходе компаратора присутствует низкий логический уровень и светодиод не горит. Если опорное напряжение превысит потенциал на противоположном входе компаратор переключается, и светодиод загорится. Для каждого компаратора установлен свой персональный уровень, который настраивается сопротивлением делителя на резисторах R1-R5.

Конструкция проста в сборке и регулировке. Основой являются три задающих генератора пилообразного напряжения, каждый из них работает на своей частоте.

Частоту генератора можно рассчитать по формуле:

где C1 — в фарадах, R1, R2, R3 — в омах. Сигналы с выхода всех трех генераторов смешиваются и поступают на усилитель, которых нагружен на восьми омную нагрузку.

Микросхема LM324 – счетверенный операционный усилитель

Если в схеме нужно использовать сразу несколько операционных усилителей, а особых требований например по частоте, выходному току и т.п. нету, то LM324 прекрасный кандидат: в 14 выводном корпусе размещены 4 операционных усилителя общего применения с общим питанием.

Операционные усилители серии LM324 выпускаются несколькими производителями и параметры микросхем от производителя к производителю могут отличаться. Так же разные производители выпускают модификации серии на разные температурные диапазоны и в разных корпусах:

  • для монтажа в отверстия: DIP14;
  • для поверхностного монтажа: SO-14, TSSOP-14, QFN16 3×3;
  • для расширенного температурного диапазона в керамических корпусах.

Например все эти операционные усилители модификации LM324: LM324A, LM324E, LM124, LM224, LM2902, LM2902E, LM2902V, NCV2902.

  • широкий диапазон питающих напряжений: от 3 до 30В;
  • может работать как при однополярном, так и при двуполярном питании;
  • большой коэффициент усиления по напряжению: 100дБ;
  • широкий частотный диапазон: 1,3МГц;
  • низкий потребляемый ток на усилитель: 375мкА;
  • низкий входной ток смещения: 2нА;
  • низкое входное напряжение смещения, максимум: 5мВ;
  • не требует внешних цепей частотной коррекции;
  • диапазон входных напряжений от 0 В.

Цоколевка LM324 в DIP-14, SO-14, TSSOP-14.

Внутренняя структура одного канала:

LM324 схемы включения

Итак, где же предлагает использовать LM324 Texas Instruments:

  • DVD и блюрей приводы,
  • Домашние кинотеатры,
  • Различные датчики,
  • Мультиметры и осцилографы,
  • Управление различными двигателями,
  • Телевизоры,
  • Весы.

Кстати TI выпускает 324-тые уже более 40 лет – с 1975.
Большое количество операционных усилителей может понадобиться как для схем с большим количеством однотипных каналов, так и в сложных схемах.
Например счетверенный LM324 пригодятся как ни кстати в схеме биквадратного фильтра.

15 thoughts on “ Микросхема LM324 – счетверенный операционный усилитель ”

Документация на LM324 от разных производителей: TI, Onsemi, Fairchild.
Интресно, что номенклатура корпусов у всех разная. Ну и куча отличий по мелочи.

Ничего удивительного в этом нет, производители закупают материалы с разной долей посторонних примесей, вот это и отражается на выходных параметрах. При производстве компонентов с одинаковой маркировкой главное точно воспроизвести основную схему.
Корпус при этом можно выбрать любой, позволяющий рассеивать номинальную мощность.

Нету проблемы купить материалы с такой же долей примесей, как и точно скопировать схемотехнику ( ведь LM324 по сравнению с современными процессорами имеет просто элементарную схему ). Я предполагаю , что просто некоторые «фишки» защищены патентами и конкурентам проходится искать свои пути не повторяя защищенные фрагменты интегральных микросхем.

Читать еще:  Схема страховки при работе на высоте

Не, напряжение смещения у него все же большое. Примерно такое же смещение нуля имели некоторые отечественные ОУ, при том они считались не самыми лучшими. Для работы с сигналами переменного тока LM324 сгодится, но если попытаться использовать ее в качестве УПТ, то «плавание» усиленного напряжения не позволит работать с сигналами малого уровня.

В качестве оффтопа: я тут недавно добыл горстку OP07. Тоже далеко не самые новые операционные усилители, но с напряжением сдвига менее 100 микровольт. По быстрому спаял на них и каких-то советских прецизионных резисторах диффусилитель на макетке. Получил устройство адекватно усиливающее напряжения около 1 милливольта с коэффициентом усиления 100. Блин, я даже не знал, что такое может быть. Пробовал раньше нечто подобное делать на ОУ широкого применения, так напряжение на выходе полностью зависело от направления ветра на Марсе и фаз Луны.

У LM324 самые явные плюсы на мой взгляд, это возможность однополярного питания и четыре ОУ в одном корпусе. Очень ценные свойства для переносной малогабаритной аппаратуры, где вес, размеры и нетребовательность к источнику питания имеют решающее значение.

Как раз OP07 самым доступный из прецизионных операционников: на али от 6 долларов 100шт. Вот правда не знаю оригинальные ли 6 центовые ОУ.
С таким смещение прекрасно подойдут для усиления сигнала с шунтов.

Я на алиэкспресс брал OP07. За оригинальность ничего не скажу, но с напряжением смещения у них все в порядке. Самому не верилось, что за копейки можно приобрести высокоточные ОУ, но работают отменно.
А вот прецизионные резисторы по дешевке уже не купишь. Хорошо, знакомый отдал мне пару сотен советских С2-29 разных номиналов, использую их в ответственных случаях.

По резисторам нормальная фирма Yageo, ставил их токовые шунты. На али есть прецизионные резисторы Yageo 0805 0,125Вт 0.1% ±25ppm/°C.
Стоят 20$ за 200шт. и 120$ за 5000шт. Но это одного номинала, очень жалко что наборы только на 1% и 5%. Был бы набор 5000шт, получалось бы за 2,4 цента отличный резистор.

В нашу цифровую эру в устройствах остается большой процент операционных усилителей, компараторов, оптопар и другой мелочевки, которую при ремонте так или иначе необходимо проверять. И каждый раз с ремонтом подобных устройств возникает проблема проверки этих компонентов на исправность, особенно счетверенных. А быстро их проверить не получается.

Да ну нафик… Панелька на куске макетной платы, несколько резисторов, двуполярный источник питания, вольтметр, вот и все что нужно для быстрой проверки ОУ. Спаять схему усилителя, подключить, измерить напряжение на выходе при подаче какого-то напряжения на вход, убедиться в наличии нуля на выходе в отсутствии сигнала. Все это делается за 15 минут.

Чем лучше у устройства с ремонтопригодностью тем оно больше по размерам и дороже. Мелкие детали труднее паять, но пользоватся компактным устройством удобнее, чем горомоздким но ремонтопригодным.

Вот кстати фото счетверенного L324 из цветного принтера Xerox Phaser 6000.

Рядом элементы в корпусах sot-23, 1206, 0603.

Ну, это естественно и касается не только электронных устройств. Полностью ремонтно-пригодных вещей становится все меньше и меньше. Как правило — это дорогучие эксклюзивы несущие не только практическую, но и эстетическую ценность.
Частично же ремонтируемых — гораздо больше. Платку там, блочёк поменять целиком или дисплей — таких сколько угодно. Да и с полностью ремонтно-пригодными часто поступают таким же образом, потому как быстрей, хоть и дороже. Но время тоже деньги, так что все решает экономическая целесообразность.

Отличная микросхема для экспериментов. Я отрабатываю на ней различные несложные устройства для электрогитар. И перегруз, и тембрблок, и компрессор — все можно сделать на одном корпусе.Мои дети и их друзья — в восторге. Для их группы — это находка. Пробуют , потом делаю на лучших по звуку и шуму микросхемах.

А по мне, так они вполне нормальные и по шуму и по нелинейным искажениям звуковой частоты. По крайней мере, филипсовского производства, другими просто не пользовался. На них и сложные устройства для электроинструментов получаются очень неплохо. А плюсы, которые Root указал выше, делают ее очень востребованной как раз в музыкальной электротехнике, где сплошная Многоканальность (именно с большой буквы) и все это надо микшировать. На один пульт жмени две идет, не меньше. А посчитайте звукосниматели… качество которых, кстати, на звук оказывает большее влияние, чем LM.

Спасибо , порадовали , что по шуму ничего они. У меня как-раз у брата группа мальчиковая (клубная). На плохоньких примочках, зато в красивых китайских коробочках. Тряхну стариной — что-то им сделаю. Одному — звук Сантаны подавай , другому Дайер Стрейтс.На этой микросхеме получится.

Карлос Сантана… вкус хороший, но он на акустике играл, в общем-то. От электроники там только усиление и небольшие вариации с атакой и затуханием звука. Ну, и техника игры на такой гитаре немного другая. Вам, чтоб повторить звук его гитары надо иметь оцифровку Ми его струн и делать цифровой синтезатор, в качестве источника использовав гитару с глухой декой и специальными струнами. В свое время, такими вещами не без успеха занималась Ямаха.
Лучше и проще, сделать приличные аналоговые темброблоки и вариаторы звука на LM324 и искать Свой звук.

Как работает сварочный инвертор?

Схема управления и контроля. Часть 2.

Продолжаем изучение сварочного инвертора Telwin. В первой части было рассказано о силовой части схемы аппарата. Пришло время разобраться в управляющей части схемы.

Читать еще:  Схема инвертора 12 220 1000вт своими руками

Вот принципиальная схема управляющей части и драйвера (control and driver).

Кликните по картинке. Рисунок схемы откроется в новом окне. Так будет удобнее более детально изучить схему.

Схема управления и драйвер.

Мозгом устройства можно считать микросхему ШИМ-контроллера. Именно она управляет работой мощных транзисторов и, так сказать, задаёт темп работы преобразователя. В зависимости от модели аппарата могут использоваться микросхемы ШИМ-контроллера типа UC3845AD (Tecnica 144-164) или VIPer20A (Tecnica 141-161, 150, 152, 170, 168GE). Микросхему ШИМ-контроллера легко найти на принципиальной схеме. Ну, а что в железе?

Далее на фото показана часть платы инвертора Telwin Force 165.

Схема управления выполнена в основном из поверхностно-монтируемых элементов (SMD). Как видно на фото поверхность платы покрыта слоем защитного лака и это затрудняет считывание маркировки с микросхем и некоторых элементов. Но, несмотря на это, можно предположительно определить, что микросхема в 14-ти выводном корпусе – это микросхема LM324. Неподалёку смонтирована микросхема в 8-ми выводном планарном корпусе. Это ШИМ-контроллер (UC3845AD).

Обратимся к схеме.

По схеме микросхема ШИМ-контроллера U1 управляет работой полевого N-канального MOSFET транзистора IRFD110 (Q4). Корпус у этого полевого транзистора довольно нестандартный (HEXDIP) – внешне похож на оптопару.

С вывода стока (D) транзистора Q4 на первичную обмотку разделителного трансформатора T1 поступают прямоугольные импульсы частотой около 65 кГц. У трансформатора T1 имеется 2 вторичные обмотки (3-4 и 5-6), с которых снимаются сигналы для управления мощными ключевыми транзисторами Q5, Q8 (см. схему силовой части). Схема на транзисторах Q6, Q7 и «обвязка» этих транзисторов нужна для правильной работы ключевых транзисторов Q5, Q8. Транзисторы Q6, Q7 в основном помогают транзисторам Q5, Q8 закрываться. Как мы уже знаем из первой части, в качестве транзисторов Q5, Q8 используются либо IGBT-транзисторы, либо MOSFET. А это накладывает некоторые требования на процесс управления ими.

Стабилитроны D16, D17, D29, D30 (на 18V) защищают IGBT-транзисторы от превышения допустимого напряжения между затвором (G) и эмиттером (E).

Цепи регулировки и контроля.

На печатной плате сварочного инвертора TELWIN Force 165 можно обнаружить занятную деталь – трансформатор тока T2.

Эта деталь участвует в работе анализатора-ограничителя тока. По принципиальной схеме видно, что трансформатор тока включен в цепь первичной обмотки трансформатора T3. За счёт индукции электромагнитного поля в трансформаторе тока T2 наводится переменное напряжение. Далее это напряжение выпрямляется и ограничивается схемой на элементах D2, D4, R49, R25,R15, R9, R3, R20, R10. За счёт этой схемы контролируется сила тока в первичной обмотке трансформатора T3, а сигналы, полученные от неё, участвуют в работе «задатчика» сварочного тока и генератора импульсов на микросхеме U1.

Схема контроля напряжения сети и выходного напряжения.

Для контроля напряжения в электросети, а также выходного напряжения (OUT+, OUT-) сварочного аппарата используется схема, состоящая из элементов операционного усилителя (ОУ) на микросхеме LM324: U2A и U2B.

Элементы делителя R1, R5, R14, R19, R24, R29, R36 и R38 подключены к входному сетевому выпрямителю и служат для обнаружения завышенного или заниженного напряжения в электросети.

На элементе U2C операционного усилителя LM324 выполнен суммирующий блок. Он складывает сигналы защиты по напряжению и току. Результирующий сигнал подаётся на задающий генератор импульсов – ШИМ контроллер (UC3845AD). При аварии, схема защиты и контроля подаёт сигнал на суммирующий блок. Он в свою очередь блокирует работу генератора, а, следовательно, и всей схемы.

Выходное напряжение снимается с выходов OUT+, OUT- и через элемент гальванической развязки – оптрон ISO1 (H11817B), поступает в схему контроля (U2A, U2B). Так осуществляется отслеживание параметров выходного напряжения.

В случае если напряжение в электросети завышено или занижено, сработает компаратор на элементе U2A и подаст сигнал на транзистор Q1 (BC807) через делитель на резисторах R12, R11. Транзистор Q1 откроется и закоротит на корпус (общий провод) вход 10 элемента U2C. Это приведёт к блокировке работы микросхемы U1 – генератора задающих импульсов. Схема выключится.

Одновременно с этим, за счёт подачи напряжения с выхода 1 компаратора U2A засветится жёлтый светодиод D12 (Giallo – «жёлтый»), указывающий на то, что в схеме неисправность или есть проблемы с сетевым питанием. Светодиод D12 показан на силовой части схемы и подключен к CN1-1. Таким же образом сработает схема, если на выходе выпрямителя (OUT+, OUT-) параметры выйдут за рамки установленных. Такое может произойти, например, при неисправностях выпрямительных диодов или если выйдут из строя детали узла контроля – оптрон ISO1 или элементы его «обвязки», полупроводниковый диод D25, стабилитрон D15, резисторы R57, R52, R51, R50 и электролитический конденсатор C29.

О других элементах схемы.

Биполярный транзистор Q9 подаёт напряжение питания на микросхему ШИМ-контроллера U1 (UC3845AD). Этот транзистор управляется элементом операционного усилителя U2B. На вывод 6 U2B подаётся напряжение с делителя на резисторах R64, R39 (см. схему силовой части). Если напряжение с делителя поступает, то U2B подаёт сигнал на транзистор Q9, который открывается и подаёт напряжение на микросхему U1. Можно сказать, что эта схема участвует в запуске мощного инвертора, так как именно она подаёт питание на управляющий инвертором ШИМ-контроллер.

Ручная установка сварочного тока осуществляется переменным резистором R23.

Ручка резистора выводится на панель управления аппарата.

Также в цепи регулировки задействованы резисторы R73, R74, R21, R66, R68, R13 и конденсатор C14. Напряжение с цепи ручной регулировки поступает на 10 вывод элемента U2C суммирующего блока.

Читать еще:  Ne 555 микросхема даташит на русском

Как уже говорилось, сварочный инвертор имеет в своём составе множество регулирующих, контролирующих и защитных цепей. Все они нужны для штатной работы аппарата, а также защищают силовые элементы инвертора в случае аварийного режима.

Теперь, когда мы разобрались в работе сварочного инвертора пора рассказать о реальном примере ремонта сварочного инвертора TELWIN Force 165. Об этом читайте здесь.

Промышленный датчик движения — описание работы и схема

Наверняка у многих в подъезде, на даче, либо в гараже стоит датчик движения , который включает свет или сигнализацию. Что же представляет из себя данный прибор? А датчик движения представляет собой пассивный инфракрасный детектор .
Питается датчик , как вы сами догадались, от сети переменного тока

220 В. Максимальная дальность обнаружения движения объекта (впереди датчика) 12 м, зона чувствительности в горизонтальной плоскости 120. 1800, регулируемая задержка освещения (после выхода объекта из зоны контроля) от 5. 10 с до 10. 15 мин. Допустимый температурный диапазон эксплуатации -10. +40°С. Допустимая влажность до 93%.
Датчик движения имеет три режима работы. Режим охраны, в котором он постоянно сканирует контролируемую зону и в случае обнаружения изменения инфракрасного фона включить реле, которое и включает нагрузку (лампа освещения, сигнализация, и т п). Режим тревоги, при котором датчик с помощью реле включил нагрузку, так как в его контролируемою зону попал движущийся объект. Спящий режим, при котором датчик, находясь во включенном состоянии (под током), в дневное время, не реагирует на внешние раздражители, а с наступлением сумерек (темноты) автоматически переходит в режим охраны. Этот режим предусмотрен для того, чтобы не включать освещение в дневное время. После подачи питания датчик начинает с режима тревоги, а потом переходит в режим охраны.
Как это работает? Фоновое инфракрасное излучение контролируемой зоны с помощью переднего стекла (линзы) фокусируется на фототранзисторе, чувствительном к ИК-лучам. Поступающее от него малое напряжение усиливается с помощью операционных усилителей микросхемы, входящей в схему датчика. В нормальных условиях реле включения нагрузки обесточено. Как только в контролируемой зоне появляется движущийся объект, освещенность фототранзистора изменяется, он выдает на вход ОУ измененное напряжение. Усиленный сигнал выводит схему из равновесия, срабатывает реле, которое включает нагрузку, например лампу освещения. Как только объект выходит из зоны, лампа некоторое время продолжает светиться, в зависимости от выставленного времени электронного реле времени, а затем переходит в исходное состояние — режим охраны.
Питание датчика выполнено по бестрансформаторной схеме , с применением гасящего конденсатора С2 емкостью 0,33 мкФх400 В. После выпрямительного моста стабилитрон ZD (1 N4749) устанавливает напряжение 25 В, которое используется для питания обмотки реле К1, а стабилизатор DA1 (78L08) из 25 В стабилизирует 8 В, которое используется для питания микросхемы LM324 и вообще всей схемы. Конденсатор С4 — сглаживающий, а СЗ предохраняет датчик от высокочастотных помех. Трехвыводной инфракрасный фототранзистор PIR D203C — его главный элемент, именно он выдает команду на включение исполнительного реле при быстром изменении инфракрасного фона контролируемой зоны. Питается от +8 В через резистор R15. Конденсатор С13 — сглаживающий, а С12 предохраняет фототранзистор от высокочастотных помех. Микросхема LM324N — главный усилитель датчика. В своем составе имеет 4 ОУ, которые схемой датчика (радиоэлементами R7, С6; D1, D2; R21, D3) включены последовательно (4-3-2-1), что обеспечивает высокое усиление сигнала, выдаваемого ИК- фототранзистором, и высокую чувствительность всего датчика. Питается от 8 В. Назначение электромеханического реле К1 модели LS-T73 SHD-24VDC-F-A — включать нагрузку, а точнее, выдавать на нее

220 В. Напряжение +25 В на обмотку реле выдает транзистор VT1. Номинальное рабочее напряжение обмотки реле 24 В, а его контакты, согласно надписи на корпусе, допускают ток 10 А при

240 В, что вызывает сомнения в способности такого малогабаритного реле коммутировать нагрузку в 2400 Вт. Заграничные производители часто завышают параметры своих радиоэлементов. Мост (R5, R6, R7, VR2, фоторезистор CDS) транзистор VT2 (SS9014, 2SC511) предназначены для установления одного из двух режимов работы датчика: режима охраны или спящего режима. Необходимый режим обеспечивается освещенностью фоторезистора CDS (именно он своим сопротивлением, изменяющимся С» освещенности, указывает датчику, сейчас день или ночь положением движка переменного резистора VR2 (DAY LIGHT). Так, при нахождении движка переменного резистора в положении День, датчик работает как днем, так и ночью, а в положении Ночь — только ночью, а днем находится в спящем режиме. Регулируемое электронное реле времени (С14, R22 VR1) обеспечивает задержку времени отключения светящей лампы от 5. 10 с до 10. 15 мин после выхода объекта из контролируемой зоны. Регулировка обеспечивается переменным резистором TIME VR1. Переменным резистором SENS VR3 регулируют чувствительность датчика путем изменения глубины отрицательной обратной связи в ОУ №3. Демпферная цепочка R1C1 поглощает скачки напряжения, возникающие при включении/выключении нагрузки.
Недостатки ИК-датчика заключаются в его ложных срабатываниях. Это происходит при движении веток деревьев или кустов, находящихся в контролируемой зоне; от проезжающей машины, точнее, от тепла его двигателя; от изменяющегося источника тепла, если он расположен под датчиком; от внезапного изменения температуры при порывах ветра; от молнии и засветки автомобильных фар от прохода животных (собак, кошек); от мигания электросети датчик срабатывает и некоторое время лампа продолжает светить. К недостаткам вышеописанного датчика следует отнести и его нерабочее состояние при отсутствии напряжения

220 В. Уменьшить количество ложных срабатываний можно путем изменения положения датчика.

Ссылка на основную публикацию