rahada.ru

Строительный журнал
12 просмотров
Рейтинг статьи
1 звезда 2 звезды 3 звезды 4 звезды 5 звезд
Загрузка...

Импульсный блок питания для ноутбука схема

Как работает простой и мощный импульсный блок питания

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БП

  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.
Читать еще:  Чертеж станка для изготовления шлакоблоков бесплатно

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств; Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.

Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

РЕМОНТ БЛОКА ПИТАНИЯ ДЛЯ НОУТБУКА

Покупая ноутбук или нетбук, точнее расчитывая бюджет на это прибретение, мы не учитываем дальнейших сопутствующих расходов. Сам лэптоп стоит допустим 500$, но ещё сумка 20$, мышь 10$. Аккумулятор при замене (а его гарантийный ресурс всего пару лет) потянет на 100$, и столько же будут стоить блок питания, в случае его сгорания.

Именно о нём и пойдёт тут разговор. У одного не очень состоятельного знакомого, недавно перестал работать блок питания для ноутбука acer. За новый придётся отдать почти сотню долларов, поэтому вполне логичным будет попробовать починить его своими руками. Сам БП представляет собой традиционную чёрную пластиковую коробочку с электронным импульсным преобразователем внутри, обеспечивающим напряжение 19В при токе 3А. Это стандарт для большинства ноутбуков и единственное отличие между ними — штеккер питания:). Сразу привожу здесь несколько схем блоков питания — кликните для увеличения.

При включении блока питания в сеть ничего не происходит — светодиод не светится и на выходе вольтметр показывает ноль. Проверка омметром сетевого шнура ничего не дала. Разбираем корпус. Хотя проще сказать, чем сделать: винтов или шурупов тут не предусмотрено, поэтому будем ломать! Для этого потребуется на соединительный шов поставить нож и стукнуть по нему слегка молотком. Смотрите не перестарайтесь, а то разрубите плату!

После того, как корпус слегка разойдётся, вставляем в образовавшуюся щель плоскую отвертку и с усилием проводим по контуру соединения половинок корпуса, аккуратно разламывая его по шву.

Разобрав корпус проверяем плату и детали на предмет чего-нибудь чёрного и обугленного.

Прозвонка входных цепей сетевого напряжения 220В сазу же выявила неисправность — это самовосстанавливающийся предохранитель, который почему-то не захотел восстановиться при перегрузке:)

Заменяем его на аналогичный, либо на простой плавкий с током 3 ампера и проверяем работу БП. Зелёный светодиод засветился, свидетельствуя о наличии напряжения 19В, но на разъёме по прежнему ничего нет. Точнее иногда что-то проскакивает, как при перегибе провода.

Придётся ремонтировать и шнур подключения блока питания к ноутбуку. Чаще всего обрыв происходит в месте ввода его в корпус или на разъёме питания.

Обрезаем сначала у корпуса — не повезло. Теперь возле штекера, что вставляется в ноутбук — снова нет контакта!

Тяжёлый случай — обрыв где-то посередине. Самый простой вариант, разрезать шнур пополам и оставить рабочую половинку, а нерабочую выкинуть. Так и сделал.

Припаиваем назад соединители и проводим испытания. Всё заработало — ремонт закончен.

Осталось только склеить половинки корпуса клеем «момент» и отдать блок питания заказчику. Весь ремонт БП занял не больше часа.

Переделка БП от ноутбука в регулируемый

Блок питания — это устройство, служащее для преобразования (понижение или повышение) переменного сетевого напряжения в заданное постоянное напряжение. Блоки питания делятся на: трансформаторные и импульсные. Первоначально создавались только трансформаторные конструкции блоков питания. Они состояли из силового трансформатора, питающегося от бытовой сети 220В, 50Гц и выпрямителя с фильтром, стабилизатором напряжения. Благодаря трансформатору происходит понижение напряжения сети до необходимых величин, с последующим выпрямлением напряжения выпрямителем, состоящим из диодов, включенных по мостовой схеме. После выпрямления постоянное пульсирующее напряжение сглаживается параллельно подключенным конденсатором. При необходимости точной стабилизации уровня напряжения применяются стабилизаторы напряжения на транзисторах.

Основной недостаток трансформаторного блока питания — это трансформатор. Почему так? Все из-за веса и габаритов, так как они ограничивают компактность блока питания, при этом их цена достаточно высока. Но эти блоки питания просты в конструкции и это их достоинство. Но все-же в большинстве современных устройств применение трансформаторных блоков питания, стало не актуальным. Им на смену пришли импульсные блоки питания.

Читать еще:  Электрическая схема подключения выключателя света

В состав импульсных блоков питания входят:

1) сетевой фильтр, (входной дроссель, электромеханический фильтр, обеспечивающего отстройку от помех, сетевой предохранитель);

2) выпрямитель и сглаживающий фильтр (диодный мост, накопительный конденсатор);

3) инвертор (силовой транзистор);

4) силовой трансформатор;

5) выходной выпрямитель (выпрямительные диоды включенные по полумостовой схеме);

6) выходной фильтр (фильтрующие конденсаторы, силовые дроссели);

7) блок управления инвертором (ШИМ контроллер с обвязкой)

Импульсный блок питания обеспечивает стабилизированное напряжение за счет использования обратной связи. Работает он следующим образом. Напряжение сети поступает на выпрямитель и сглаживающий фильтр, где напряжение сети выпрямляется, а пульсации сглаживается за счет использования конденсаторов. При этом выдерживается амплитуда порядка 300 вольт. На следующем этапе подключается инвертор. Его задача — формирование прямоугольных высокочастотных сигналов для трансформатора. Обратная связь с инвертором осуществляется через блок управления. С выхода трансформатора высокочастотные импульсы поступают на выходной выпрямитель. Из-за того, что частота импульсов порядка 100 кГц, то необходимо применение быстродействующих полупроводниковых диодов Шотке. На завершавшей фазе производится сглаживание напряжения на фильтрующем конденсаторе и дросселе. И только после этого напряжение заданной величины подается в нагрузку. Все, хватит теории, перейдем к практике и начнем делать блок питания.

Корпус блока питания

Каждый радиолюбитель, который занимается радиоэлектроникой, желая оформить свои устройства часто сталкивается с проблемой, где взять корпус. Эта проблема постигла и меня, что в свою очередь натолкнуло на мысль, а почему бы не сделать корпус своими руками. И тут начались мои поиски. Поиск готового решения как сделать корпус не привел ни к чему. Но я не отчаивался. Подумав некоторое время, у меня возникла мысль, а почему не сделать корпус из пластикового короба для укладки проводов. По габаритам он мне подходил, и я начал резать и клеить. Смотрим рисунки ниже.

Размеры короба были выбраны исходя из размера платы блока питания. Смотрим рисунок ниже.

Также в корпусе должны поместиться еще индикатор, провода, регулятор и сетевой разъем. Смотрим рисунок ниже.

Для установки выше перечисленных элементов в корпусе были прорезаны необходимые отверстия. Смотрим рисунки выше. Ну и наконец, для придания корпусу блока питания эстетичности, он был окрашен в черный цвет. Смотрим рисунки ниже.

Измерительный прибор

Скажу сразу, что искать измерительный прибор долго не пришлось, выбор сразу пал на совмещенный цифровой вольтамперметр TK1382. Смотрим рисунки ниже.

Диапазоны измерений прибора составляют для напряжения 0-100 В и ток до 10 А. На приборе также установлены два калибровочных резистора для подстройки напряжения и тока. Смотрим рисунок ниже.

Что касается схемы подключения, то у нее есть нюансы. Смотрим рисунки ниже.

Схема блока питания

Для измерения тока и напряжения воспользуемся схемой — 2, смотри рисунок выше. И так по порядку. На имеющийся у меня блок питания от ноутбука сначала найдем схему электрическую принципиальную. Поиск необходимо проводить по ШИМ контроллеру. В данном блоке питания это CR6842S. Схему смотрим ниже.

Теперь коснемся переделки. Так как будет делаться регулируемый блок питания, то схему придется переделать. Для этого внесем изменения в схему, эти участки обведены оранжевым цветом. Смотрим рисунок ниже.

Участок схемы 1,2 обеспечивает питание ШИМ контроллера. И из себя представляет параметрический стабилизатор. Напряжение стабилизатора 17,1 В выбрано в связи с особенностями работы ШИМ контроллера. При этом для питания ШИМ контроллера задаемся током через стабилизатор порядка 6 мА. «Особенность данного контроллера в том, что для его включения необходимо напряжение питания больше 16,4 В, ток потребления 4 мА» выдержка из datasheet. При такой переделке блока питания необходимо отказаться от обмотки самозапитки, так как ее применение не целесообразно при низких напряжениях на выходе. На рисунке ниже можете увидеть данный узел после переделки.

Участок схемы 3 обеспечивает регулирование напряжения, при данных номиналах элементов регулирование осуществляется в пределах 4,5-24,5 В. Для такой переделки необходимо выпаять резисторы, отмеченные на рисунке ниже оранжевым цветом, и на их место запаять переменный резистор для регулировки напряжения.

На этом переделка окончена. И можно производить пробный запуск. ВАЖНО. В связи с тем, что блок питания запитывается от сети 220 В то необходимо быть внимательным, во избежания попадания под действие напряжения сети! Это ОПАСНО ДЛЯ ЖИЗНИ. Перед первым запуском блока питания необходимо проверить правильность монтажа всех элементов, а затем производить включение в сеть 220 В, через лампочку накаливания 220 В, 40 Вт во избежания выхода из строя силовых элементов блока питания. Первый запуск можете увидеть на рисунке ниже.

Также после первого запуска проверим верхний и нижний пределы регулирования напряжения. И как задумывалось, они лежат в заданных пределах 4,5-24,5 В. Смотрим рисунки ниже.

Ну и напоследок, при испытаниях с нагрузкой на 2,5 А корпус начал хорошо греться, что меня не устроило и я решил сделать перфорацию в корпусе для охлаждения. Место для перфорации выбирал исходя из места наибольшего нагрева. Для перфорации корпуса сделал 9 отверстий диаметром 3 мм. Смотрим рисунок ниже.

Для предотвращения случайного попадания внутрь корпуса токопроводящих элементов, с обратной стороны крышки на небольшом расстоянии приклеена предохранительная заслонка. Смотрим рисунок ниже.

Вот и все, в результате сделан регулируемый блок питания из зарядного от ноутбука. Ниже можно посмотреть дополнительные фото.

Импульсный блок питания для ноутбука схема

  • Power Master 250W модель LP-8 ver 2.03 230W (AP-5-E v1.1) схема
  • Power Master 250W модель FA-5-2 ver 3.2 схема
  • Maxpower PX-300W на микросхеме SG6105D схема
  • PowerLink (Linkworld) 300W LPJ2-18 на микросхеме LPG-899 схема
  • JNC 250W модель lc-b250atx на микросхеме 2003 схема
  • PowerMan IP-P550DJ2-0 на микросхеме W7510 схема
  • LWT 2005 на микросхеме LM339N и KA7500B схема
  • Power Master 250W модель AP-3-1 на микросхеме TL494 схема
  • ATX-310T модель ATX-300P4-PFC на микросхеме TL494 и LM339 схема
  • PowerMan 350W модель IP-P350AJ на микросхеме W7510 схема
Читать еще:  Схема размещения светильников может быть равномерной шахматной

    Подборка схем № 2
  • ATX-P6 схема
  • PowerMan 450W модель IP-S450T7-0 схема
  • ComStars 400W модель KT-400EX-12A1 на микросхеме UC3543A схема
  • Green Tech 300W модель MAV-300W-P4 на микросхеме TL494CN и WT7510 схема
  • Dell 280W PS-5281-5DF-LF модель L280P-01 на TNY278, UC3843BN и PS222 схема
  • Krauler ATX-450 450W на TL3845, LD7660, WT7510 схема
  • SevenTeam ST-200HRK на LM339, ШИМ UTC51494, UC3843AN схема
  • Enermax 200W на ШИМ TL494 схема
  • Dell 350W PS-6351-1DFS модель L350P-00 на TNY267P, UC3843BN, PS224 схема
  • Dell 305W PS-6311-2DF2-LF модель L305-00 на TNY267P, UC3843BN, PS224 и 11N90С схема
  • Dell 250W PS-5251-2DFS на TNY267P, UC3845BN, TSM111CN и полевикe 2SK2611 схема
  • Dell 230W PS-5231-2DS-LF на TNY266P, UC3843BN, PS222S и полевиках FQA9N90C схема
  • Dell 160W PS-5161-7DS на ШИМ контроллере UC3845GN и полевике 2SK2654 схема
  • Dell 160W PS-5161-1D1S на TNY267P, UC3843BN, TSM111CN и полевике 2SK2654 схема
  • Dell 145W SA145-3436 на ШИМ UC3842, LM358N и полевике IFRBC30 схема
  • SevenTeam ST-230WHF на LM339, ШИМ TL494 схема

    Подборка схем № 3
  • Power Mini P4, Model PM-300W. Основной ШИМ SG6105 схема
  • SPS-1804-2(M1) и SPS-1804E(1) на микросхеме TL494CN схема
  • ShenShon 400W модель SZ-400L и 450W модель SZ450L, дежурка на C3150, ШИМ AT2005 схема
  • из iMAC G5 A1058, APFC на 4863G, дежурка на TOP245YN, основной БП на 3845B схема
  • PowerMan 350W модель IP-P350AJ2-0 ver.2.2 на GM3843, W7510 и ICE2A0565Z схема
  • PowerMan 450W модель IP-S450T7-0 rev:1.3 на 3845, WT7510 и A6259H схема
  • AUVA VIP P200B 200W на TL494 схема
  • CWT CWT-235ATX 235W MAX на UTC34063, KA7500B и LM393 схема
  • PM30006-02 ATX 300W 230V 80PLUS на микросхемах SG6931, SG6516, SG6858 схема
  • TND359-D 255W ATX 80 PLUS-certified, на микросхемах NCP4302, NCP1396A, NCP1654, NCP4302, PS223, NCP1587, NCP1027, LM393 схема
  • Часть схемы БП CoolerMaster 460W RS-460-PCAP-A3 на WT7527, UC3843, TNY277NP схема
  • Shido LP-6100 ATX-250W на TL494 и LM339 схема
  • Corsair 1200W AX1200i часть схемы на 3843B и ICE3BS03LJG схема

    Подборка схем № 4 — БП «Chieftec»
  • Chieftec CFT-500A-12S, CFT-560A-12S, CFT-620A-12S на CM6800G, PS222S, SG6858 или SG6848 схема
  • Chieftec APS-1000C, cхемы дежурки и модуля ШИМ на TNY278PN, CM6800TX схема
  • Chieftec 850W CFT-850G-DF схема
  • Chieftec 350W GPS-350EB-101A схема
  • Chieftec 350W GPS-350FB-101A схема
  • Chieftec 500W GPS-500AB-A схема
  • Chieftec 550W GPS-550AB-A схема
  • Chieftec 650W GPS-650AB-A и Chieftec 650W CFT-650A-12B схема
  • Chieftec 1000W CFT-1000G-DF и Chieftec 1200W CFT-1200G-DF схема
  • Chieftec CFT-600-14CS, CFT-650-14CS, CFT-700-14CS, CFT-750-14CS на LD7550B схема
  • Chieftec 750W CTG-750C на CM6805A, R7731A, CM03 и HY510N схема
  • Chieftec 550W APS-550S на FAN4800, PS224 и TNY278 схема
  • Chieftec CTG-350-80P, CTG-400-80P, CTG-450-80P и CTG-500-80P на CM6805A, HY510N и R7731A схема
  • Chieftec iArena GPA-400S8 на CM6805BSX, TNY176PN и ST9S313-DAG схема
  • Chieftec CFT-370-P12S, CFT-430-P12S, CFT-460-P12S на SG6105D схема
  • Chieftec 750W APS-750C схема
  • Схема основной платы Chieftec 750W BPS-750C на SG6848T и PS229 схема
  • Схема платы управления и кулера Chieftec 750W BPS-750C схема
  • Chieftec iArena GPA-500S на CM6805BSX, TNY176PN и ST9S313-DAG схема
  • Chieftec 650W CTB-650S (NO-720A REV-A1) на TNY278PN, FAN4800, PS223 схема
  • Chieftec 460W ENH-0746GB (часть схемы) на TDA16888 схема
  • Chieftec 650W APS-650C (часть схемы) APFC и силовая часть на FAN4800IN, 24N60C, 20N60C3 схема

    Подборка схем блоков питания № 5 — БП для ноутбуков
  • Универсальный БП 70W для ноутбуков 12-24V, модель SCAC2004, плата EWAD70W на чипе LD7552 схема
  • БП 60W 19V 3.42A для ноутбуков, плата KM60-8M на микросхеме UC3843 схема
  • Delta ADP-36EH для ноутбуков 12V 3A, на микросхеме DAP6A и DAS001 схема
  • Li Shin LSE0202A2090 90W для ноутбуков 20V 4.5A, на чипах NCP1203 и TSM101, АККМ на L6561 схема
  • Delta ADP-30JH 30W для ноутбуков 19V 1.58A, на микросхеме DAP018B и TL431 схема
  • Delta ADP-40PH ABW схема
  • HP Compaq CM-0K065B13-LF 65W для ноутбуков 18.5V 3.5A, модель PPP009H-DC359A, на микросхемах UC3842 и LM358 схема
  • NB-90B19-AAA 90W для ноутбуков 19V 4.74A, на TEA1750 схема
  • Lite-On PA-1121-04CP на LTA702 схема
  • Delta ADP-40MH BDA (Part No:S93-0408120-D04) на DAS01A, DAP008ADR2G схема
  • 19V 4.74A на LTA301P, 103AI, PFC собрана на TDA4863G/FAN7530/L6561D/L6562D схема
  • Delta ADP-90SB BB AC:110-240v DC:19V 4.7A на DAP6A, DSA001 или TSM103A схема
  • Delta ADP-90FB AC:100-240v DC:19V 4.74A на L6561D013TR, DAP002TR и DAS01A схема
  • Lite-On PA-1211-1 AC:100-240v DC:12.2V 17.25A на LM339N, L6561, UC3845BN, LM358N схема
  • Li Shin LSE0202A2090 AC:100-240v DC:20V 4.5A 90W на L6561, NCP1203-60 и TSM101 схема
  • Универсальный БП Gembird NPA-AC1 15V/16V/18V/19V/19.5V/20V 4.5A 90W на LD7575 схема
  • Delta ADP-60DP AC:100-240v DC:19V 3.16A на TSM103W (M103A) и I6561D схема
  • Delta ADP-40PH BB для ноутбуков 19V 2.1A на микросхеме DAP018ADR2G и полевике STP6NK60ZFP схема
  • Asus SADP-65KB B AC:100-240v DC:19V 3.42A на DAP006 (DAP6A) и DAS001 (TSM103AI) схема
  • Asus PA-1900-36 AC:100-240v DC:19V 4.74A на LTA804N и LTA806N схема
  • Asus ADP-90CD DB AC:100-240v DC:19V 4.74A на DAP013D и полевике 11N65C3 схема
  • Asus ADP-90SB BB AC:100-240v DC:19V 4.74A на DAP006 (DAP6A) и DAS001 (TSM103AI) схема
  • LiteOn PA-1900/05 AC:100-240v DC:19V 4.74A на LTA301P и 103AI, PFC 2SK3561, 2SK3569 схема
  • LiteOn PA-1121-04 AC:100-240v DC:19V 6.3A на LTA702, 2SK3934, SPA11N65C3 схема

    Подборка схем № 6
  • БП на FAN4800A (заменима на ML4800, FAN4800, CM6800 или CM6800A), FSBH0370 и SG6520 схема
  • Microlab 420W, на WT7510, ШИМ TL3842 и дежурка на 5H0165R схема
  • Chip Goal 250W CCG8010DX, на микросхеме CG8010DX (он же WT7520) схема
  • BESTEC ATX-300-12ES на микросхемах UC3842, 3510 и A6351 схема
  • BESTEC ATX-400W(PFC) на микросхемах ICE1PCS01, UC3842, 6848, 3510, LM358 схема
  • Microlab M-ATX-420W на базе UC3842, супервизор 3510 и LM393 схема
  • Sparkman SM-400W на KA3842A, WT7510 схема
  • Hiper HPU-4S425-PU 425W APFC на микросхемах CM6805, VIPer22A, LM393, PS229 схема
  • FSP Epsilon 600W FX600-GLN (схема дежурки), собрана на FSDM0265R схема
  • CWT PUH400W ATX собран на 3845B, VIPer22A, LM393, PS113 схема
  • Microlab ATX-5400X 400W на KA7500B и LM339 схема
  • AOpen 400W AO400-12ALN и AO400-APNB на KA1H0165R, L4981AD, KA3511 и LM358N схема
Ссылка на основную публикацию