Dc-dc преобразователь на mc34063 - источники питания - radio-bes - электроника для дома. Преобразователь напряжения на MC34063 Стабилизатор на mc34063 с внешним ключом

  • 20.09.2014

    Триггер — это уст-во с двумя устойчивыми состояниями равновесия, предназначенные для записи и хранения информации. Триггер способен хранить 1 бит данных. Условное обозначение триггера имеет вид прямоугольника, внутри которого пишется буква Т. Слева к изображению прямоугольника подводятся входные сигналы. Обозначения входов сигнала пишутся на дополнительном поле в левой части прямоугольника. …

  • 21.09.2014

    Однотактовый выходной каскад лампового усилителя содержит минимум деталей и прост в сборке и регулировке. Пентоды в выходном каскаде могут использоваться только ультралинейном включении, триодном или обычном режимах. При триодном включении экранирующая сетка соединяется с анодом через резистор 100…1000Ом. В ультралинейном включении каскад охвачен ОС по экранирующей сетке, что дает снижение …

  • 04.05.2015

    На рисунке показана схема простого инфракрасного пульта и приемника исполнительным элементом которого является реле. Из-за простоты схемы пульта уст-во может выполнять только два действия, это включить реле и выключить его отпустив кнопку S1, что может быть достаточно для определенных целей (гаражные ворота, открывание электромагнитного замка и др.). Настройка схемы очень …

  • 05.10.2014

    Схема выполнена на сдвоенном ОУ TL072. На А1.1 сделан предварительный усилитель с коэф. усиления заданным отношением R2\R3. R1-регулятор громкости. На ОУ А1.2 выполнен активный трех полосовой мостовой регулятор тембра. Регулировки осуществляются переменными резисторами R7R8R9. Коэф. передачи этого узла 1. Наряженные питания предварительного УНЧ может быть от ±4В до ±15В Литература …

Этот калькулятор позволяет вычислить параметры импульсного DC-DC преобразователя на MC34063A. Калькулятор умеет рассчитывать повышающие, понижающие и инвертирующие преобразователи на широкодоступной микросхеме mc33063 (она-же mc34063). На экран выводятся данные частотозадающего конденсатора, максимальный ток, индуктивность катушки, сопротивление резисторов. Резисторы выбираются из ближайших стандартных значений так, чтобы выходное напряжение наиболее близко соотвествовало требуемому значению.


Ct - емкость частотнозадающего конденсатора преобразователя.
Ipk - пиковый ток через индуктивность. На этот ток должна быть расчитанна индуктивность.
Rsc - резистор который отключит микросхему при превышении тока.
Lmin - минимальная индуктивность катушки. Меньше этого номинала брать нельзя.
Co - конденсатор фильтра. Чем он больше тем меньше пульсаций, должен быть LOW ESR типа.
R1, R2 - делитель напряжения который задает выходное напряжение.

Диод должен быть сверхбыстрым (ultrafast) или диодом шоттки с допустимым обратным напряжение не менее чем в 2 раза превышающим выходное.

Напряжение питания микросхемы 3 - 40 вольт , а ток Ipk не должен превышать 1.5А

Детали в схеме рассчитаны на 5В с ограничение тока 500мА, с пульсацией 43кГц и 3мВ. Входное напряжение может быть от 7 до 40 вольт.

За выходное напряжение отвечают резисторный делитель на R2 и R3, если их заменить подстроечным резистором где-то на 10 кОм, то можно будет задавать требуемое выходное напряжение. За ограничение тока отвечает резистор R1. За частоту пульсаций отвечают конденсатор C1 и катушка L1, за уровень пульсаций конденсатор C3. Диод может быть заменён на 1N5818 или 1N5820. Для расчёта параметров схемы есть специальный калькулятор — http://www.nomad.ee/micros/mc34063a/index.shtml , где стоит только задать требуемые параметры, он так же может рассчитать схемы и параметры преобразователей нерассмотренных двух типов.

Было изготовлено 2 печатные платы: слева – с делителем напряжения на делителе напряжения, выполненном на двух резисторов типоразмера 0805, справа с переменным резистором 3329H-682 6,8кОм. Микросхема MC34063 в корпусе DIP, под ней два чип танталовых конденсатора типоразмера – D. Конденсатор C1 –типоразмера 0805, диод выводной, резистор ограничения тока R1 – на пол вата, при малых токах, меньше 400 мА, можно поставить резистор меньшей мощности. Индуктивность CW68 22мкГн, 960мА.

Осциллограммы пульсаций, R огранич = 0,3 Ом

На этих осциллограммах показаны пульсации: слева – без нагрузки, справа – с нагрузкой в виде сотового телефона, ограничивающий резистор 0,3 Ом, снизу с той же нагрузкой, но ограничивающий резистор на 0,2 Ом.

Осциллограмма пульсации, R огранич = 0,2 Ом

Снятые характеристики (замерены не все параметры), при входном напряжении 8,2 В.

Этот адаптер был изготовлен для подзарядки сотового телефона и питания цифровых схем в походных условиях.

В статье была приведена плата с переменным резистором в качестве делителя напряжения, размешаю к ней и соответствующею схему, отличие от первой схемы только в делителе.

33 комментария на « Понижающий DC-DC преобразователь на MC34063»

    Очень даже!
    Жаль, я на 3,3 Uвых искал, и помощьнее надо (1,5А-2А).
    Может доработаете?

    В статье приведена ссылка на калькулятор для схемы. По нему для 3,3В нужно поставить R1=11k R2=18k.
    Если вам нужны токи по более, то нужно или транзистор добавлять, или использовать более мощный стабилизатор, например LM2576.

    Спасибо! Направили.

    Если поставить транзистор внешний — защита по току останется? К примеру R1 поставить 0,05 ОМ защита должна срабатывать при 3 A, т.к. микруха сама не выдержит этот ток то ес-но надо усилить полевиком.

    Думаю, ограничение (у этой микросхемы ограничение тока, а не защита) остаться должно будет. В даташите есть схема на биполярнике и расчёты для увеличения тока. Для более больших токов могу посоветовать LM2576, она как раз до 3А.

    Здравствуйте! Я тоже собрал эту схему для автомобильной зарядки мобильника. Но он когда «голодный» (разряжен) ест очень немалый ток (870mA). для этой микрухи это еще нормально, только грется должна. Собирал и на макетке и на плате, результат один — работает 1минуту затем просто падает ток и мобильник отключает заряд.
    Мне не понятно только одно… почему у автора статьи не совпадают не один номинал из расчетных, практически, с калькулятором который привел в статье ссылку. по параметрам у автора «…с пульсацией 43кГц и 3мВ.» и 5В на выходе, а калькулятор при этих прметрах выдает C1 — 470пик, L1 — 66-68мкГн,
    С3 — 1000uF. Вопрос вот в чем: И ГДЕ ТУТ ПРАВДА?

    В самом начале статьи написано – что статья отправлена на доработку.
    Во время расчётов допустил ошибки, и из-за них схема так сильно греться, нужно правильно подобрать конденсатор C1 и индуктивность, но пока до этой схемы всё руки не доходят.
    Мобильник отключает заряд, по превышение определённого напряжения, для большинства телефонов это напряжение более 6В с чем-то вольт. Заряжать телефон лучше током поменьше, аккумулятор подольше проживёт.

    Спасибо Alex_EXE за ответ! Заменил все компоненты по калькулятору, схема не греется вообще, напряжение на выходе 5,7В а при нагрузке (зарядке мобильного) выдает 5В — это норма, да и по току 450mA, детали выбрал по калькулятору, все сошлось в доли вольта. Катушку брал на 100мкГн (калькулятор выдал: не менее 64мкГн, значит можно более:). Все компоненты распишу позже, как испытаю, если кому интересно.
    Таких сайтов как у Вас Alex_EXE (русскоязычных) не так уж и много на просторах интернета, развивайте его и дальше, если можете. Спасибо Вам!

    Рад, что помог 🙂
    Распишите, кому-нибудь может пригодиться.

    Ок, расписываю:
    Испытания прошли удачно, мобилка заряжается (батарея в моей нокии 1350мА)
    -выходное напряжение 5,69В (видимо 1мВ кудато потеряло:) — без нагрузки, и 4,98В с нагрузкой «мобилка».
    -входное бортовое 12В (ну это автомобиль, понятно что 12 это идиал, а так 11,4-14,4В).
    Номиналы для схемы:
    — R1=0.33 Ом/1W (потому как немного греется)
    — R2=20K /0.125W
    — R3=5,6K/0.125W
    — C1=470p керамика
    — C2=1000uF/25v (низкоимпедансный)
    — C3=100uF/50v
    — L1 (как уже писал выше 100мкГн, лучше если будет 68мкГн)

    Вот и все:)

    А у меня к Вам Alex_EXE вопрос:
    Я не могу найти на просторах инета информацию про «Напряжение пульсаций на нагрузке» и «Частота преобразования»
    Как правильно задать эти параметры в калькулятор, то есть подобрать?
    И Что они значат вообще?

    Сейчас хочу на этой микрухе сделать зарядку от батареек но нужно четко понимать эти два параметра.

    Чем пульсаций меньше – тем лучше. У меня стоит 100мкФ и уровень пульсаций 2,5-5%, в зависимости от нагрузки, у вас стоит 1000мкФ – этого более чем достаточно. Частота пульсации в пределах нормы.

    Про пульсации кое-как понял, это как сильно «прыгает напряжение», ну…. примерно:)
    А вот частота преобразования. Что делать с ней? стремится уменьшить или увеличить? Гугла про это молчит как партизан, или то я так искал:)

    Тут я вам точно сказать не могу, хотя частота от 5 до 100КГц для большинства задач будет нормальной. В любом случае это зависит от задачи, более всего требовательны к частоте аналоговые и точные приборы, где колебания могут наложиться на рабочие сигналы тем самым вызвав их искажения.

    Адександр пишет 23.04.2013 в 10:50

    Нашёл то, что надо! Очень кстати. Большое Вам Alex_EXE спасибо.

    Алекс, обьясните пожалуйста чайнику, в случае ввода в схему переменного резистора, в каких пределах будет меняться напряжение?

    можно ли используя данную схему сделать источник тока 6,6 вольт с регулируемым напряжением, Umax чтоб не превышало эти самые 6,6 вольт. хочу сделать несколько групп светодиодов (раб. U 3,3 вольт и ток 180 ма), в каждой группе 2 св.диода, послед. соединенны. источник питания 12вольт, но если необходимо могу приобрести другой. Спасибо если ответите…))

    К сожалению данная конструкция мне не понравилась — больно капризная. Если в будущем надобность появиться то могу вернуться, но пока на неё забил.
    Для светодиодов лучше применять специализированные микросхемы.

    Частота преобразования чем выше, тем лучше, т.к. уменьшаются габариты (индуктивность) дросселя, но в разумных пределах — для MC34063 оптимально 60-100 кГц. Резистор R1 и будет греться, т.к. по сути это токоизмерительный шунт, т.е. весь ток потребляемый как самой схемой так и нагрузкой течет через него (5В х 0,5А=2,5Ватт)

    Вопрос конечно глупый но можно-ли с неё снять +5, земля и -5 вольт? мощь большая не нужна, но нужна стабильность, или ещё что дополнительное придёться ставить типа 7660?

    Всем здрасьте. Ребята кто может помоч сделать, чтобы на выходе было 10 Вольт или лучше с регулировкой. Илья можно Вас попросить мне расписать. Подскажите пожалуйста. Спасибо.

    В листе спецификаций производителя mc34063:
    максимальная частота F=100 kHz, типовая F = 33 kHz.
    Vripple = 1 mV — типовое значение, Vripple = 5 mV — максимальное.

    Выход на 10 В:
    — для понижающего DC, если на входе 12 В:
    Vin=12 В, Vout=10 В, Iout=450 mA, Vripple=1 mV(pp), Fmin=34 kHz.
    Ct=1073 pF, Ipk=900 mA, Rsc=0.333 Ohm, Lmin=30 uH, Co=3309 uF,
    R1=13k, R2=91k (10V).
    — для повышающего DC, если на входе 3 В:
    Vin=3 В, Vout=10 В, Iout=450 mA, Vripple=1 mV(pp), Fmin=34 kHz.
    Ct=926 pF, Ipk=4230 mA, Rsc=0.071 Ohm,Lmin=11 uH, Co=93773 uF,R=180 Ohm,R1=13k R2=91k (10V)

    Вывод: для повышающего DC при заданных параметрах микросхема не годится, так как превышен Ipk=4230 mA > 1500 mA. Вот вариант: http://www.youtube.com/watch?v=12X-BBJcY-w
    Стабилитрон на 10 В поставить.

    Судя по осциллограммам у Вас дроссель насыщается, нужен дроссель мощней. Можно повысить частоту преобразования, оставив дроссель тех же габаритов и индуктивности. Кстати, МЦ-шка спокойно работает до 150 кгц, главное внутр. транзисторы включать не «дарлингтоном». Насколько я понял, его можно параллельно в схему питания припитать?

    И главный вопрос: как увеличить мощность преобразователя? Смотрю, кондёры там маленькие - на входе 47мкФ, на выходе вообще 2,2мкФ… От них мощь зависит? Впаять туда по штуке-полторы мкФ? 🙂

    Что делать, шеф, что делать?!

    Очень некорректно использовать танталовые конденсаторы в цепях питания! Тантал очень не любит больших токов и пульсаций!

    > Очень некорректно использовать танталовые конденсаторы в цепях питания!

    а где их еще использовать, если не в импульсных блоках питания?! 🙂

    Отличьная статейка. Рад был почитать. Все на понятном простом языке без выпендривания. Даже прочитав коментарии приятно был удивлен, отзывчивость и простота общения на высоте. Почему я попал на эту тему. Потому что собираю подмотку одометра на Камаз. Нашел схему, и там настоятельно автор рекомендует, запитывать микроконтролер именно таким образом, а не через кренку. Иначе горит контролер. Не знаю точьно, на наверно кренка не держит таково входного напряжения и поэтому палитса. Так как на такой машине 24 В. Но что мне было не понятно, так это то, что на схеме по чертежу вроди бы стабилитрон. У автора подмотки одометра было собранно на смд компонентах. И этот стабилитрон ss24 оказываетса смд диодом шотки. ТУт на схеме тоже нарисован как стабилитрон. Но вроди бы хорошо понел, тут диод а не стабилитрон. Хотя может я путаю их чертеж? может так рисуетса диоды шотки а не стабилитроны? Осталось уточьнить такую малость. Но за статейку большое спосибо.

MC34063 представляет собой достаточно распространенный тип микроконтроллера для построения преобразователей напряжения как с низкого уровня в высокий, так и с высокого в низкий. Особенности микросхемы заключаются в ее технических характеристиках и рабочих показателях. Устройство хорошо держит нагрузки с током коммутации до 1,5 А, что говорит о широкой сфере его использования в различных импульсных преобразователях с высокими практическими характеристиками.

Описание микросхемы

Стабилизация и преобразование напряжения — это немаловажная функция, которая используется во многих устройствах. Это всевозможные регулируемые источники питания, преобразующие схемы и высококачественные встраиваемые блоки питания. Большинство бытовой электроники сконструированного именно на этой МС, потому что она имеет высокие рабочие характеристики и без проблем коммутирует достаточно большой ток.

MC34063 имеет встроенный осциллятор, поэтому для работы устройства и старта преобразования напряжения в различные уровни достаточно обеспечить начальное смещение путем подключения конденсатора ёмкостью 470пФ. Этот контроллер пользуется огромной популярностью среди большого количества радиолюбителей. Микросхема хорошо работает во многих схемах. А имея несложную топологию и простое техническое устройство, можно легко разобраться с принципом ее работы.

Типовая схема включения состоит из следующих компонентов:

  • 3 резистора;
  • диод;
  • 3 конденсатора;
  • индуктивность.

Рассматривая схему на понижение напряжения или его стабилизации можно увидеть, что она оснащена глубокой обратной связью и достаточно мощным выходным транзистором, который прямотоком пропускает через себя напряжение.

Схема включения на понижение напряжения и стабилизации

Из схемы видно, что ток в выходном транзисторе ограничивается резистором R1, а времязадающим компонентов для установки необходимой частоты преобразования является конденсатор C2. Индуктивность L1 накапливает в себе энергию при открытом транзисторе, а по его закрытию разряжается через диод на выходной конденсатор. Коэффициент преобразования зависит от соотношения сопротивлений резисторов R3 и R2.

ШИМ-стабилизатор работает в импульсном режиме:

При открытии биполярного транзистора индуктивность набирает энергию, которая затем накапливается на выходной ёмкости. Такой цикл повторяется постоянно, обеспечивая стабильный выходной уровень. При условии наличия на входе микросхемы напряжения 25В на ее выходе оно составит 5 В с максимальным выходным током до 500мА.

Напряжение можно увеличить путем изменения типа отношения сопротивлений в цепи обратной связи, подключенной к входу. Также он используется в качестве разрядного диода в момент действия обратной ЭДС, накопленной в катушке в момент ее заряда при открытом транзисторе.

Применяя такую схему на практике, можно изготовить высокоэффективный понижающий преобразователь. При этом микросхема не потребляет избыток мощности, которая выделяется при снижении напряжения до 5 или 3,3 В. Диод предназначен для обеспечения обратного разряда индуктивности на выходной конденсатор.

Импульсный режим понижения напряжения позволяет значительно экономить заряд батареи при подключении устройств с низким потреблением. Например, при использовании обычного параметрического стабилизатора на его нагрев во время работы уходило по меньшей мере до 50% мощности. А что тогда говорить, если потребуется выходное напряжение в 3,3 В? Такой понижающий источник при нагрузке в 1 Вт будет потреблять все 4 Вт, что немаловажно при разработке качественных и надёжных устройств.

Как показывает практика применения MC34063, средний показатель потерь мощности снижается как минимум до 13%, что стало важнейшим стимулом для ее практической реализации для питания всех низковольтных потребителей. А учитывая широтно-импульсный принцип регулирования, то и нагреваться микросхема будет незначительно. Поэтому для ее охлаждения не потребуется радиаторов. Средний КПД такой схемы преобразования составляет не менее 87%.

Регулирование напряжения на выходе микросхемы осуществляется за счёт резистивного делителя. При его превышении выше номинального на 1,25В компоратор переключает триггер и закрывает транзистор. В этом описании рассмотрена схема на понижение напряжения с выходным уровнем 5В. Чтобы изменить его, повысить или уменьшить, необходимо будет изменить параметры входного делителя.

Для ограничения тока коммутационного ключа применяется входной резистор. Рассчитываемый как отношение входного напряжения к сопротивлению резистора R1. Чтобы организовать регулируемый стабилизатор напряжения к 5 выводу микросхемы подключается средняя точка переменного резистора. Один вывод к общему проводу, а второй к питанию. Работает система преобразования в полосе частот 100кГц, при изменении индуктивности она может быть изменена. При уменьшении индуктивности повышается частота преобразования.

Другие режимы работы

Кроме режимов работы на понижение и стабилизацию, также довольно часто применяется повышающий. отличается тем, что индуктивность находится не на выходе. Через нее протекает ток в нагрузку при закрытом ключе, который отпираясь, подаёт на нижний вывод индуктивности отрицательное напряжение.

Диод, в свою очередь, обеспечивает разряд индуктивности на нагрузку в одном направлении. Поэтому при открытом ключе на нагрузке формируется 12 В от источника питания и максимальный ток, а при закрытом на выходном конденсаторе оно повышается до 28В. КПД схемы на повышение составляет как минимум 83%. Схемной особенностью при работе в таком режиме является плавное включение выходного транзистора, что обеспечивается ограничением тока базы посредством дополнительного резистора, подключенного к 8 выводу МС. Тактовая частота работы преобразователя задаётся конденсатором небольшой ёмкости, преимущественно 470пФ, при этом она составляет 100кГц.

Выходное напряжение определяется по следующей формуле:

Uвых=1,25*R3 *(R2+R3)

Используя вышеуказанную схему включения микросхемы МС34063А, можно изготовить повышающий преобразователь напряжения с питанием от USB до 9, 12 и более вольт в зависимости от параметров резистора R3. Чтобы провести детальный расчет характеристик устройства, можно воспользоваться специальным калькулятором. Если R2 составляет 2,4кОм, а R3 15кОм, то схема будет преобразовать 5В в 12В.

Схема на MC34063A повышения напряжения с внешним транзистором

В представленной схеме использован полевой транзистор . Но в ней допущена ошибка. На биполярном транзисторе необходимо поменять местами К-Э. А ниже представлена схема из описания. Внешний транзистор выбирается исходя из тока коммутации и выходной мощности.

Довольно часто для питания светодиодных источников света применяется именно эта микросхема для построения понижающего или повышающего преобразователя. Высокий КПД, низкое потребление и высокая стабильность выходного напряжения – вот основные преимущества схемной реализации. Есть много схем драйверов для светодиодов с различными особенностями.

Как один из многочисленных примеров практического применения можно рассмотреть следующую схему ниже.

Схема работает следующим образом:

При подаче управляющего сигнала внутренний триггер МС блокирован, а транзистор закрыт. И через диод протекает зарядный ток полевого транзистора. При снятии импульса управления триггер переходит во второе состояние и открывает транзистор, что приводит к разряду затвора VT2. Такое включение двух транзисторов обеспечивает быстрое включение и выключение VT1, что снижает вероятность нагрева из-за практически полного отсутствия переменной составляющей. Для расчета тока, протекающего через светодиоды, можно воспользоваться: I=1,25В/R2.

Зарядное устройство на MC34063

Контроллер MC34063 универсален. Кроме, источников питания она может быть применена для конструирования зарядного устройства для телефонов с выходным напряжением 5В. Ниже представлена схема реализации устройства. Ее принцип работы объясняется как и в случае с обычным преобразованием понижающего типа. Выходной ток заряда аккумулятора составляет до 1А с запасом 30%. Для его увеличения необходимо использовать внешний транзистор, например, КТ817 или любой другой.