Импульсный стабилизатор тока для мощных светодиодов. Изготовление простого стабилизатора тока и напряжения

В обсуждениях электрических схем часто встречаются термины «стабилизатор напряжения» и «стабилизатор тока». Но какая между ними разница? Как работают эти стабилизаторы? В какой схеме нужен дорогой стабилизатор напряжения, а где достаточно простого регулятора? Ответы на данные вопросы вы найдёте в этой статье.

Рассмотрим стабилизатор напряжения на примере устройства LM7805.В его характеристиках указано: 5В 1,5А. Это значит стабилизирует он именно напряжение и именно до 5В. 1,5А - это максимальный ток, который может проводить стабилизатор. Пиковая сила тока. То есть от может отдать и 3 миллиампера, и 0,5 ампер, и 1 ампер. Столько, сколько тока требует нагрузка. Но не больше полутора. Это главное отличие стабилизатора напряжения от стабилизатора тока.

Виды стабилизаторов напряжения

Различают всего 2 основных типа стабилизаторов напряжения:

  • линейные
  • импульсные

Линейные стабилизаторы напряжения

Например, микросхемы КРЕН или , LM1117 , LM350 .

Кстати, КРЕН — это не аббревиатура, как многие думают. Это сокращение. Советская микросхема-стабилизатор, аналогичная LM7805 имела обозначение КР142ЕН5А. Ну а ещё есть КР1157ЕН12В, КР1157ЕН502, КР1157ЕН24А и куча других. Для краткости всё семейство микросхем стали называть «КРЕН». КР142ЕН5А тогда превращается в КРЕН142.

Советский стабилизатор КР142ЕН5А. Аналог LM7805.

Стабилизатор LM7805

Наиболее распространенный вид. Недостаток их в том, что они не могут работать на напряжении ниже, чем заявленное выходное напряжение. Если стабилизирует напряжение на 5 вольтах, то на вход ему подать нужно как минимум на полтора вольта больше. Если подать меньше 6,5 В, то выходное напряжение «просядет», и мы уже не получим 5 В. Еще один минус линейных стабилизаторов - сильный нагрев при нагрузке. Собственно, в этом и заключается принцип их работы — всё, что выше стабилизируемого напряжения, просто превращается в тепло. Если мы на вход подадим 12 В, то 7 потратятся на нагрев корпуса, а 5 пойдут потребителю. Корпус при этом нагреется настолько сильно, что без радиатора микросхема просто сгорит. Из всего этого вытекает ещё один серьёзный недостаток — линейный стабилизатор не стоит применять в устройствах с питанием от батареек. Энергия батареек будет тратиться на нагрев стабилизатора. Всех этих недостатков лишены импульсные стабилизаторы.

Импульсные стабилизаторы напряжения

Импульсные стабилизаторы - лишены недостатков линейных, но и стоят дороже. Это уже не просто микросхема с тремя выводами. Выглядят они, как плата с детальками.

Один из вариантов исполнения импульсного стабилизатора.

Импульсные стабилизаторы бывают трех видов: понижающие, повышающие и всеядные. Наиболее интересные - всеядные. Независимо от напряжения на входе, на выходе будет именно то, которое нам нужно. Всеядному импульснику все равно, что на входе напряжение ниже или выше нужного. Он сам автоматом переключается в режим повышения или понижения напряжения и держит заданное на выходе. Если в характеристиках заявлено, что стабилизатору на вход можно подать от 1 до 15 вольт и на выходе будет стабильно 5, то так оно и будет. Кроме того, нагрев импульсных стабилизаторов настолько незначителен, что в большинстве случаев им можно пренебречь. Если ваша схема будет питаться от батареек или размещаться в закрытом корпусе, где сильный нагрев линейного стабилизатора недопустим - ставьте импульсный. Я использую настраиваемые импульсные стабилизаторы напряжения за копейки, которые заказываю с Aliexpress. Купить можно .

Хорошо. А что со стабилизатором тока?

Не открою Америку, если скажу, что стабилизатор тока стабилизирует ток.
Токовые стабилизаторы ещё иногда называют светодиодным драйвером. Внешне они похожи на импульсные стабилизаторы напряжения. Хотя сам стабилизатор - маленькая микросхема, а всё остальное нужно для обеспечения правильного режима работы. Но обычно драйвером называют всю схему сразу.

Примерно так выглядит стабилизатор тока. Красным кружком обведена та самая схема, которая и является стабилизатором. Всё остальное на плате — обвязка.

Итак. Драйвер задаёт ток. Стабильно! Если написано, что на выходе будет ток в 350мА, то будет именно 350мА. А вот напряжение на выходе может меняется в зависимости от требуемого потребителем напряжения. Не будем пускаться в дебри теории о том. как всё это работает. Просто запомним, что вы напряжение не регулируете, драйвер сделает все за вас исходя из потребителя.

Ну так и зачем всё это нужно то?

Теперь вы знаете, чем стабилизатор напряжения отличается от стабилизатора тока и можете ориентироваться в их многообразии. Возможно, вам так и не стало понятно, зачем эти штуки нужны.

Пример: вы хотите запитать 3 светодиода от бортовой сети автомобиля. Как вы можете узнать из , для светодиода важно контролировать именно силу тока. Используем самый распространенный вариант соединения светодиодов: последовательно соединены 3 светодиода и резистор. Напряжение питания - 12 вольт.

Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели. Падение напряжения на светодиоде пусть будет у нас 3.4 вольта.
После первого светодиода остается 12-3.4= 8.6 вольт.
Нам пока хватает.
На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.
А после третьего останется 5.2-3.4=1.8 вольта.
При желании добавить четвёртый светодиод — уже не хватит.
Если напряжение питания поднять до 15В, то тогда хватит. Но тогда и резистор тоже надо будет пересчитать. Резистор - простейший стабилизатор (ограничитель) тока. Их часто ставят на те же ленты и модули. У него есть минус - чем ниже напряжение, тем меньше будет и ток на светодиоде (закон Ома, с ним не поспоришь). Значит, если входное напряжение нестабильно (в автомобилях обычно так и есть), то предварительно нужно стабилизировать напряжение, а потом можно ограничить резистором ток до необходимых значений. Если используем резистор, как токовый ограничитель там, где напряжение не стабильно, нужно стабилизировать напряжение.

Стоит помнить, что резисторы имеет смысл ставить только до определенной силы тока. После некоторого порога резисторы начинают сильно греться и приходится ставить более мощные резисторы (зачем резистору мощность рассказано в о этом приборе) . Тепловыделение растёт, КПД падает.

Тоже называют светодиодным драйвером. Часто те, кто не сильно разбирается в этом, стабилизатор напряжения называют просто драйвером светодиодов, а импульсный стабилизатор тока - хорошим светодиодным драйвером. Он выдаёт сразу стабильное напряжение и ток. И почти не нагревается. Вот так он выглядит:

Все светодиоды, независимо от форм-фактора и электрических параметров, питаются током. Правильно заданный ток – это гарантия длительной и стабильной работы осветительного прибора. Так почему же производители светодиодной продукции часто вместо стабилизатора тока устанавливают стабилизатор напряжения? Как это сказывается на работе светодиодных ламп, лент, фонарей и прожекторов? Попробуем разобраться.

Стабилизаторы напряжения

Исходя из названия, эти устройства предназначены для поддержания напряжения в нагрузке на определённом уровне. При этом величина выходного тока зависит от самой нагрузки. Другими словами, сколько потребуется нагрузки, столько она возьмёт, но не более максимально возможного значения. Допустим, стабилизатор напряжения обладает такими выходными параметрами: 12В и 1 А. То есть на выходе всегда будет поддерживаться 12В, а ток потребления может быть в диапазоне от нуля до одного ампера. Существует два вида стабилизаторов напряжения: линейные и импульсные.

Как правило, регулирующим элементом в схеме стабилизатора является биполярный или полевой транзистор. Если этот транзистор работает в активном режиме, то стабилизатор называют линейным. Если же регулирующий транзистор работает в ключевом режиме, то стабилизатор называют импульсным.

Наиболее распространенными и недорогими являются линейные стабилизаторы напряжения, однако они имеют ряд недостатков:

  • низкий КПД;
  • при большом токе нагрузки нуждаются в теплоотводе;
  • имеют достаточно высокое падение напряжения.

Чтобы не сталкиваться с подобными недостатками, рекомендуется использовать стабилизаторы напряжения импульсного типа. Они бывают трех типов: повышающие, понижающие и универсальные. Импульсные стабилизаторы имеют высокий КПД, не нуждаются в дополнительном отводе тепла при больших токах нагрузки, но имеют более высокую стоимость.

Стабилизаторы тока

Простейший ограничитель тока – резистор. Его часто называют простейшим стабилизатором, что неверно, так как резистор не способен стабилизировать ток при колебании напряжения на своем входе.

Применение резистора в схеме питании светодиода допустимо только при стабилизированном входном напряжении. В противном случае все скачки напряжения передаются в нагрузку и негативно отражаются на работе светодиода. Эффективность резистивных ограничителей тока очень низкая, так как вся потребляемая ими энергия рассеивается в виде тепла.

Немного выше КПД у конструкций на базе готовых интегральных микросхем (ИМ) линейных стабилизаторов. Схемы линейных стабилизаторов на базе ИМ выделяющиеся минимальным набором элементов, отсутствием помех и простой настройкой.

Чтобы избежать перегрева регулирующего элемента, разность входного и выходного напряжения должна быть небольшой, но достаточной (3-5 вольт). Иначе корпус микросхемы вынужден будет рассеивать невостребованную энергию, тем самым снижая КПД.

Драйверы для светодиодов на основе готовых ИМ линейных стабилизаторов выделяются дешевизной и доступностью элементов для сборки своими руками.

Наиболее эффективными принято считать токовые драйверы с широтно-импульсной модуляцией (ШИМ). Их конструируют на базе специализированных микросхем с цепью обратной связи и элементами защиты, что в несколько раз повышает надёжность всего устройства. Наличие в них импульсного трансформатора ведет к удорожанию схемы, но оправдано высоким КПД и сроком службы. Токовые ШИМ стабилизаторы с питанием от источника 12В несложно сделать своими руками, используя специализированную микросхему. Например, ИМС PT4115 от компании PowTech, которая разработана специально для схем питания светодиодов мощностью от 1 до 10 Вт.

Параметры питания светодиодов

У светодиодов, кроме номинального тока существует ещё один важный параметр – прямое падение напряжения. Роль этого параметра также существенна, именно поэтому его указывают в первом ряду технических параметров полупроводникового прибора.

Чтобы через p-n переход начал протекать ток, к нему нужно приложить какое-то минимальное прямое напряжение Uмин.пр.. Значение минимального прямого напряжения указывается в документации светодиода и отражается на графике вольт - амперных характеристик (ВАХ).

На зеленом участке ВАХ светодиода видно, что только при достижении Uмин.пр. начинает протекать ток Iпр. Дальнейший незначительный рост Uпр приводит к резкому росту Iпр. Именно поэтому даже небольшие перепады напряжения свыше Uмакс..пр. губительны для кристалла светодиода. В момент превышения Uмакс.пр. ток достигает своего пика и происходит разрушение кристалла. Для каждого типа светодиодов существует номинальный ток и соответствующее ему напряжение (паспортные данные), при которых прибор должен отработать заявленный срок службы.

Правильное и неправильное включение

Больше всего ошибок допускают автомобилисты, когда пытаются сэкономить на схеме питания светодиодного освещения. Часто автолюбители включают светодиодные приборы напрямую от аккумулятора, а потом жалуются на разные неполадки: моргание, потерю яркости и полное погасание кристалла. Всё это происходит из-за отсутствия промежуточного преобразователя, который должен компенсировать перепады напряжения в интервале от 10 до 14,5В. Ещё одна ошибка владельцев авто – подключение только через резистор, рассчитанный на среднее показание аккумулятора 12В. Резистор – линейный элемент, а значит, ток через него растет пропорционально напряжению. Подключение через резистор допускается при условии его расчета на 14,5В, но тогда придется смириться с неполной светоотдачей светодиодов при низких и средних значениях напряжения в бортовой сети. Поэтому однозначный верный способ подключения светодиодов в автомобиле – это использование стабилизатора тока, желательно импульсного типа.

В различных осветительных конструкциях на основе светодиодов часто используются именно стабилизаторы напряжения. Почему так происходит? Во-первых, они намного дешевле качественных токовых драйверов. Во-вторых, чтобы из стабилизатора напряжения получился более-менее надёжный драйвер достаточно на выходе установить резистор, грамотно рассчитав его мощность и сопротивление. Такое схемотехническое решение часто применяется в недорогих LED лампах и осветительных конструкциях с применением светодиодных лент.

Большинство светодиодных лент питается стабильным напряжением 12В. Если рассмотреть конструкцию ленты более детально, то можно увидеть, что она разделена на небольшие участки. Как правило, каждый участок состоит из трёх SMD­ светодиодов и одного токозадающего резистора. Падение напряжения на одном светоизлучающем элементе в среднем составляет 2,5-3,5 В, то есть максимум 10,5В в сумме. Остаток гасится резистором, номинал которого изготовитель подбирает под тип используемых светодиодов. Поэтому подключение светодиода через связку из стабилизатора напряжения и резистора можно считать правильной.

Выходная мощность стабилизатора должна быть больше потребляемой мощности нагрузки примерно на 30%.

Если использовать простой блок питания без стабилизации (трансформатор, диодный мост и конденсатор), то при небольшом увеличении напряжения сети, его пропорционально уменьшенная часть будет равномерно распределяться на всех четырёх элементах каждого участка ленты. В итоге вырастет ток, температура кристалла и, как следствие, начнется необратимый процесс деградации светодиодов.

Самым правильным схемотехническим решением является применение стабилизатора тока импульсного типа. На сегодняшний день – это оптимальный вариант, который используют все ведущие производители светодиодных изделий. Токовый драйвер с ШИМ регулятором практически не греется, эффективен и надёжен.

Так чему же отдать предпочтение: дешевому стабилизатору напряжения с резистором или более дорогому токовому драйверу? Правильный ответ скрыт в выражении: «Любая экономия должна быть оправдана». Если Вам нужно подключить десяток слаботочных светодиодов или не более одного метра ленты, то выбор в пользу первого варианта нельзя назвать ошибочным.

Но если ваша цель – запитать фирменные светодиоды с мощностью каждого кристалла более 1 Вт, то без качественного токового драйвера не обойтись. Потому что стоимость таких излучающих диодов намного выше цены на драйвер.

Читайте так же

За последние 10-20 лет количество бытовой электроники многократно выросло. Появилось огромное разнообразие электронных компонентов и готовых модулей. Возросли и требования к питанию, для многих требуется стабилизированное напряжение или стабильный ток.

Драйвер чаще всего используется как стабилизатор тока для светодиодов и зарядки автомобильных аккумуляторов. Такой источник теперь есть в каждой светодиодном прожекторе, лампе или светильнике. Рассмотрим все варианты стабилизации, начиная от старых и простых до самых эффективных и современных. Еще они называются , led driver.


  • 1. Типы стабилизаторов
  • 2. Популярные модели
  • 3. Стабилизатор для светодиодов
  • 4. Драйвер на 220 В
  • 5. Стабилизатор тока, схема
  • 6. LM317
  • 7. Регулируемый стабилизатор тока
  • 8. Цены в Китае

Типы стабилизаторов

Импульсные регулируемые постоянного тока

15 лет назад на первом курсе я сдавал зачёты по предмету «Источники питания» для радиоэлектронной аппаратуры. Начиная с тех пор и до сегодняшнего времени, самым народным и популярным остаётся микросхема LM317 и её аналоги, которая относится к классу линейных стабилизаторов.

На данный момент есть несколько видов стабилизаторов напряжения и тока:

  1. линейные до 10А и входным напряжением до 40В;
  2. импульсные с высоким входным напряжением, понижающие;
  3. импульсные с низким входным напряжением, повышающие.

На импульсном ШИМ контроллере обычно от 3 до 7 ампер по характеристикам. В реальности зависит от системы охлаждения и КПД в конкретном режиме. Повышающий из низкого входного напряжения на выходе делает более высокое. Такой вариант используется для от блоков питания с малым количеством вольт. Например в автомобиле, когда из 12В надо сделать 19В или 45В. С понижающим проще, высокое снижается до нужного уровня.

Про все способы питания светодиодов читайте в статье « к 12 и 220В». Отдельно описаны схемы подключения от простейших за 20 руб до полноценных блоков с хорошим функционалом.

По функционалу они делятся на специализированные и универсальные. Универсальные модули обычно имеют 2 переменных сопротивления, для настройки Вольт и Ампер на выходе. Специализированные чаще всего не имеют построечных элементов и значения на выходе фиксированы. Среди специализированных, распространены стабилизаторы тока для светодиодов, схемы в большом количестве есть в интернете.

Популярные модели

Lm2596

Среди импульсных стала популярна LM2596, но по современным меркам у неё низкий КПД. Если более 1 ампера, то требуется радиатор. Небольшой список аналогичных:

  1. LM317
  2. LM2576
  3. LM2577
  4. LM2596
  5. MC34063

Дополню современным китайским ассортиментом, который хороший по характеристикам, но встречается гораздо реже. На Алиэкспресс помогает поиск именно по маркировке. Список собран по интернет-магазинам:

  • MP2307DN
  • XL4015
  • MP1584EN
  • XL6009
  • XL6019
  • XL4016
  • XL4005
  • L7986A

Так же подходят для китайских дневных ходовых огней ДХО. Из-за дешевизны светодиоды подключены через резистор к авто аккумулятору или автомобильной сети. Но напряжения скачет до 30 вольт импульсами. Низкокачественные светодиоды не выдерживают таких скачков и начинают дохнуть. Скорее всего вы видали мигающие ДХО или ходовые огни, у которых некоторые светодиоды не работают.

Сборка схемы своими руками на этих элементах будет простой. Преимущественно это стабилизаторы напряжения, которые включаются в режиме стабилизации тока.

Не путайте максимальное напряжение всего блока и максимальное напряжение ШИМ контроллера. На блоке могут быть установлены низковольтные конденсаторы на 20В, когда импульсная микросхема имеет вход до 35В.

Стабилизатор для светодиодов

Сделать стабилизатор тока для светодиодов своими руками проще всего на LM317, требуется только рассчитать резистор для светодиода на онлайн калькуляторе. Питание можно использовать подручное, например:

  1. блок питания от ноутбука на 19V;
  2. от принтера на 24В и 32В;
  3. от бытовой электроники на 12 вольт, 9V.

Преимущества такого преобразователя, это низкая цена, легко купить, минимум деталей, высокая надежность. Если схема стабилизатора тока сложнее, то собирать её своими руками становится не рационально. Если вы не радиолюбитель, то импульсный стабилизатор тока проще и быстрее купить. В дальнейшем его можно доработать до необходимых параметров. Подробнее вы можете узнать в разделе «Готовые модули».

Драйвер на 220 В

..

Если вас интересует драйвер для светодиода на 220в, то лучше его заказать или купить. Они имеют среднюю сложность изготовления, но настройка отнимет больше времени и потребуется опыт по наладке.

Светодиодный драйвер на 220 можно извлечь из неисправных светодиодных ламп, светильников и прожекторов, у которых неисправна цепь со светодиодами. К тому же практически любой имеющийся драйвер можно доработать. Для этого узнайте модель ШИМ контроллера, на котором собран преобразователь. Обычно параметры на выходе задаются резистором или несколькими. По даташиту (datasheet) посмотрите, какое сопротивление должно быть, чтобы получить нужные Амперы.

Если поставить регулируемый резистор рассчитанного номинала, то количество Ампер на выходе будет настраиваемым. Только не превышайте номинальную мощность, которая была указана.

Стабилизатор тока, схема

Мне приходится часто просматривать ассортимент на Aliexpress в поисках недорогих но качественных модулей. Разница по стоимости может быть в 2-3 раза, время уходит на поиск минимальной цены. Но благодаря этому делаю заказ на 2-3 штуки для тестов. Покупаю для обзоров и консультаций производителей, которые покупают комплектующие в Китае.

В июне 2016 года оптимальным выбором стал универсальный модуль на XL4015, цена которого 110руб с бесплатной доставкой. Его характеристики подходят для подключения мощных светодиодов до 100 Ватт.

Схема в режиме драйвера.

В стандартном варианте корпус XL4015 припаян к плате, которая служит радиатором. Для улучшения охлаждения на корпус XL4015 надо поставить радиатор. Большинство ставят его сверху, но эффективность такой установки низкая. Лучше систему охлаждения ставить снизу платы, напротив места пайки микросхемы. В идеале её лучше отпаять и поставить на полноценный радиатор через термопасту. Ножки скорее всего придется удлинить проводами. Если потребуется такое серьезное охлаждение контроллеру, то оно потребуется и диоду Шотки. Его тоже придётся поставить на радиатор. Такая доработка значительно повысит надежность всей схемы.

В основном модули не имеют защиты от неправильной подачи питания. Это моментально выводит их из строя, будьте внимательны.

LM317

Применение (крен) даже не требует каких либо навыков и знаний по электронике. Количество внешних элементов в схемах минимально, поэтому это доступный вариант для любого. Её цена очень низкая, возможности и применение многократно испытаны и проверены. Только она требует хорошего охлаждения, это её основной недостаток. Единственное стоит опасаться низкокачественных китайских микросхем ЛМ317, которые имеют параметры похуже.

Микросхемы линейной стабилизации из-за отсутствия лишних шумов на выходе, использовал для питания высококачественных ЦАП класса Hi-Fi и Hi-End. Для ЦАП огромную роль играет чистота питания, поэтому некоторые используют аккумуляторы для этого.

Максимальная сила для LM317 составляет 1,5 Ампера. Для увеличения количества ампер можно добавить в схему полевой транзистор или обычный. На выходе можно будет получить до 10А, задаётся низкоомным сопротивлением. На данной схеме основную нагрузку на себя берёт транзистор КТ825.

Другой способ, это поставить аналог с более высокими техническими характеристиками на большую систему охлаждения.

Регулируемый стабилизатор тока

Меня как радиолюбителя со стажем 20 лет радует ассортимент продаваемых готовых блоков и модулей. Сейчас из готовых блоков можно собрать любое устройство за минимальное время.

Я начал терять доверие к китайской продукции, после того, как у видел в «Танковом биатлоне», как у лучшего китайского танка отпало колесо.

Лидером по ассортименту блоков питания, преобразователей тока DC-DC, драйверов стали китайские интернет-магазины. У них в свободной продаже можно найти практически любые модули, если поискать получше, то и очень узкоспециализированные. Например за 10.000 т.руб можно собрать спектрометр стоимостью 100.000 руб. Где 90% цены это накрутка за бренд и немного доработанный китайский софт.

Цена начинается от 35руб. за DC-DC преобразователь напряжения, драйвер подороже и отличается двумя тремя подстроечными резисторами, вместо одного.

Для более универсального использования лучше подходит регулируемый драйвер. Основное отличие, это установка переменного резистора в цепи, задающей амперы на выходе. Эти характеристики могут быть указаны в типовых схемах включения в спецификациях на микросхему, даташит, datasheet.

Слабые места таких драйверов, это нагрев дросселя и диода Шотки. В зависимости от модели ШИМ контроллера, они выдерживают то 1А до 3А без дополнительного охлаждения микросхемы. Если выше 3А, то требуется охлаждение ШИМ и мощного диода Шотки. Дроссель перематывают более толстым проводом или заменяют на подходящий.

КПД зависит от режима работы, разницы напряжения между входом и выходом. Чем выше коэффициент полезного действия, тем ниже нагрев стабилизатора.

Цены в Китае

Стоимость очень низкая, с учетом того, что доставка включена в цену. Раньше я думал, что из-за товара за 30-50 руб китайцы даже и мараться не будут, много работы при малом доходе. Но как показала практика, я ошибался. Любую копеечную ерунду они упаковывают и отсылают. Приходит в 98% случаев, а закупаю на Aliexpress уже более 7 лет и на большие суммы, наверное уже около 1 млн руб.

Поэтому оформляю заказ заранее, обычно 2-3 штуки одного наименования. Ненужное распродаю на местном форуме или Авито, всё расходится как горячие пирожки.

Статья-ликбез по стабилизаторам тока светодиодов и не только. Рассматриваются схемы линейных и импульсных стабилизаторов тока.

Стабилизатор тока для светодиода устанавливается во многие конструкции светильников. Светодиоды, как и все диоды имеют нелинейную вольт-амперную характеристику. Это означает, что при изменении напряжения на светодиоде, ток изменяется непропорционально. По мере увеличения напряжения, сначала ток растёт очень медленно, светодиод при этом не светится. Затем, при достижении порогового напряжения, светодиод начинает светиться и ток возрастает очень быстро. При дальнейшем увеличении напряжения, ток возрастает катастрофически и светодиод сгорает.

Пороговое напряжение указывается в характеристиках светодиодов, как прямое напряжение при номинальном токе. Номинальный ток для большинства маломощных светодиодов - 20 мА. Для мощных светодиодов освещения, номинальный ток может быть больше - 350 мА или более. Кстати, мощные светодиоды выделяют тепло и должны быть установлены на теплоотвод.

Для правильной работы светодиода, его надо питать через стабилизатор тока. Зачем? Дело в том, что пороговое напряжение светодиода имеет разброс. Разные типы светодиодов имеют разное прямое напряжение, даже однотипные светодиоды имеют разное прямое напряжение - это указано в характеристиках светодиода как минимальное и максимальное значения. Следовательно, два светодиода, подключенные к одному источнику напряжения по параллельной схеме будут пропускать разный ток. Этот ток может быть настолько разным, что светодиод может раньше выйти из строя или сгореть сразу. Кроме того, стабилизатор напряжения также имеет дрейф параметров (от уровня первичного питания, от нагрузки, от температуры, просто по времени). Следовательно, включать светодиоды без устройств выравнивания тока - нежелательно. Различные способы выравнивания тока рассмотрены . В этой статье рассматриваются устройства, устанавливающие вполне определённый, заданный ток - стабилизаторы тока.

Типы стабилизаторов тока

Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт.

Поскольку напряжение на светодиоде определяется его параметрами и в общем случае неизменно, то стабилизатор тока можно назвать также стабилизатором мощности светодиода. В простейшем случае, выделяемая устройством активная мощность (тепло) распределяется между светодиодом и стабилизатором пропорционально напряжению на них. Такой стабилизатор называется линейным. Также существуют более экономичные устройства - стабилизаторы тока на базе импульсного преобразователя (ключевого преобразователя или конвертера). Они называются импульсными, поскольку внутри себя прокачивают мощность порциями - импульсами по мере необходимости для потребителя. Правильный импульсный преобразователь потребляет мощность непрерывно, внутри себя передаёт её импульсами от входной цепи к выходной и выдаёт мощность в нагрузку уже опять непрерывно.

Линейный стабилизатор тока

Линейный стабилизатор тока греется тем больше, чем больше приложено к нему напряжение. Это его основной недостаток. Однако, он имеет ряд преимуществ, например:

  • Линейный стабилизатор не создаёт электромагнитных помех
  • Прост по конструкции
  • Имеет низкую стоимость в большинстве применений

Поскольку импульсный преобразователь не бывает абсолютно эффективным, существуют приложения, когда линейный стабилизатор имеет сравнимую или даже большую эффективность - когда входное напряжение лишь немного превышает напряжение на светодиоде. Кстати, при питании от сети, часто используется трансформатор, на выходе которого устанавливается линейный стабилизатор тока. То есть, сначала напряжение снижается до уровня, сравнимого с напряжением на светодиоде, а затем, с помощью линейного стабилизатора устанавливается необходимый ток.

В другом случае, можно приблизить напряжение светодиода к напряжению питания - соединить светодиоды в последовательную цепочку. Напряжение на цепочке будет равняться сумме напряжений на каждом светодиоде.

Схемы линейных стабилизаторов тока

Самая простая схема стабилизатора тока - на одном транзисторе (схема "а"). Поскольку транзистор - это усилитель тока, то его выходной ток (ток коллектора) больше тока управления (ток базы) в h 21 раз (коэффициент усиления). Ток базы можно установить с помощью батарейки и резистора, или с помощью стабилитрона и резистора (схема "б"). Однако такую схему трудно настраивать, полученный стабилизатор будет зависеть от температуры, кроме того, транзисторы имеют большой разброс параметров и при замене транзистора, ток придётся подбирать снова. Гораздо лучше работает схема с обратной связью "в" и "г". Резистор R в схеме выполняет роль обратной связи - при увеличении тока, напряжение на резисторе возрастает, тем самым запирает транзистор и ток снижается. Схема "г", при использовании однотипных транзисторов, имеет бóльшую температурную стабильность и возможность максимально уменьшить номинал резистора, что снижает минимальное напряжение стабилизатора и выделение мощности на резисторе R.

Стабилизатор тока можно выполнить на базе полевого транзистора с p-n переходом (схема "д"). Напряжение затвор-исток устанавливает ток стока. При нулевом напряжении затвор-исток, ток через транзистор равен начальному току стока, указанному в документации. Минимальное напряжение работы такого стабилизатора тока зависит от транзистора и достигает 3 вольт. Некоторые производители электронных компонентов выпускают специальные устройства - готовые стабилизаторы с фиксированным током, собранные по такой схеме - CRD (Current Regulating Devices) или CCR (Constant Current Regulator) . Некоторые называют его диодным стабилизатором, поскольку в обратном включении он работает как диод.

Компания On Semiconductor выпускает линейный стабилизатор серии NSIxxx, например , который имеет два вывода и для увеличения надежности, имеет отрицательный температурный коэффициент - при увеличении температуры, ток через светодиоды снижается.

Стабилизатор тока на базе импульсного преобразователя по конструкции очень похож на стабилизатор напряжения на базе импульсного преобразователя, но контролирует не напряжение на нагрузке, а ток через нагрузку. При снижении тока в нагрузке, он подкачивает мощность, при увеличении - снижает. Наиболее распространённые схемы импульсных преобразователей имеют в своём составе реактивный элемент - дроссель, который с помощью коммутатора (ключа) подкачивается порциями энергии от входной цепи (от входной ёмкости) и в свою очередь передаёт её нагрузке. Кроме очевидного преимущества экономии энергии, импульсные преобразователи обладают рядом недостатков, с которыми приходится бороться различными схемотехническими и конструктивными решениями:

  • Импульсный конвертер производит электрические и электромагнитные помехи
  • Имеет как правило сложную конструкцию
  • Не обладает абсолютной эффективностью, то есть тратит энергию для собственной работы и греется
  • Имеет чаще всего бóльшую стоимость, по сравнению, например, с трансформаторными плюс линейными устройствами

Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.

Схемы импульсных преобразователей

Поскольку стабилизатор тока основан на импульсном преобразователе, рассмотрим основные схемы импульсных преобразователей. Каждый импульсный преобразователь имеет ключ, элемент, который может находиться только в двух состояниях - включенном и выключенном. В выключенном состоянии, ключ не проводит ток и, соответственно, на нём не выделяется мощность. Во включенном состоянии, ключ проводит ток, но имеет очень малое сопротивление (в идеале - равное нулю), соответственно на нём выделяется мощность, близкая к нулю. Таким образом, ключ может передавать порции энергии от входной цепи к выходной практически без потерь мощности. Однако, вместо стабильного тока, какой можно получить от линейного источника питания, на выходе такого ключа будет импульсное напряжение и ток. Для того, чтобы получить снова стабильные напряжение и ток, можно поставить фильтр.

С помощью обычного RC фильтра можно получить результат, однако, эффективность такого преобразователя не будет лучше линейного, поскольку вся избыточная мощность выделится на активном сопротивлении резистора. Но если использовать вместо RC - LC фильтр (схема "б"), то, благодаря "специфическим" свойствам индуктивности, потерь мощности можно избежать. Индуктивность обладает полезным реактивным свойством - ток через неё возрастает постепенно, подаваемая на него электрическая энергия преобразуется в магнитную и накапливается в сердечнике. После выключения ключа, ток в индуктивности не пропадает, напряжение на индуктивности меняет полярность и продолжает заряжать выходной конденсатор, индуктивность становится источником тока через обводной диод D. Такая индуктивность, предназначенная для передачи мощности, называется дросселем. Ток в дросселе правильно работающего устройства присутствует постоянно - так называемый неразрывный режим или режим непрерывного тока (в западной литературе такой режим называется Constant Current Mode - CCM). При снижении тока нагрузки, напряжение на таком преобразователе возрастает, энергия, накапливаемая в дросселе снижается и устройство может перейти в разрывный режим работы, когда ток в дросселе становится прерывистым. При таком режиме работы резко повышается уровень помех, создаваемых устройством. Некоторые преобразователи работают в пограничном режиме, когда ток через дроссель приближается к нулю (в западной литературе такой режим называется Border Current Mode - BCM). В любом случае, через дроссель течет значительный постоянный ток, что приводит к намагничиванию сердечника, в связи с чем, дроссель выполняется особой конструкции - с разрывом или с использованием специальных магнитных материалов.

Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема "а"). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема "б"), включенного последовательно с нагрузкой.

Ключ преобразователя, в зависимости от сигнала регулятора, включается с различной скважностью. Есть два распространённых способа управления ключом - широтно-импульсная модуляция (ШИМ) и токовый режим. В режиме ШИМ, сигнал ошибки управляет длительностью импульсов при сохранении частоты следования. В токовом режиме, измеряется пиковый ток в дросселе и изменяется интервал между импульсами.

В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.

Понижающий преобразователь

Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.

Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.

Повышающий преобразователь

Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания. Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку. Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.

В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.

Инвертирующий преобразователь

Еще одна схема импульсного преобразователя работает аналогично - когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС будет иметь обратный знак и на нагрузке появится отрицательное напряжение.

Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter.

Прямоходовой и обратноходовой преобразователи

Наиболее часто блоки питания изготавливаются по схеме, использующей в своем составе трансформатор. Трансформатор обеспечивает гальваническую развязку вторичной цепи от источника питания, кроме того, эффективность блока питания на основе таких схем может достигать 98% и более. Прямоходовой преобразователь (схема "а") передаёт энергию от источника в нагрузку в момент включенного состояния ключа. Фактически - это модифицированный понижающий преобразователь. Обратноходовой преобразователь (схема "б") передаёт энергию от источника в нагрузку во время выключенного состояния.

В прямоходовом преобразователе трансформатор работает в обычном режиме и энергия накапливается в дросселе. Фактически - это генератор импульсов с LC фильтром на выходе. Обратноходовой преобразователь накапливает энергию в трансформаторе. То есть трансформатор совмещает свойства трансформатора и дросселя, что создаёт определённые сложности при выборе его конструкции.

В западной литературе прямоходовой преобразователь называется Forward converter. Обратноходовой - Flyback converter.

Применение импульсного конвертера в качестве стабилизатора тока

Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения. Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя. Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения.

Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы от известного производителя электронных компонентов On Semiconductor:

Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1. Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора. В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель. При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла.

Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы /CAT4201:

Для работы устройства мощностью до 7 Ватт необходимо всего 8 компонентов, включая саму микросхему. Импульсный стабилизатор работает в пограничном режиме тока и для его работы требуется небольшой выходной керамический конденсатор. Резистор R3 необходим при питании от 24 Вольт и выше для снижения скорости нарастания входного напряжения, хотя это несколько снижает эффективность устройства. Частота работы превышает 200 кГц и меняется в зависимости от нагрузки и входного напряжения. Это обусловлено методом регулирования - контролем пикового тока дросселя. Когда ток достигает максимального значения, ключ размыкается, когда ток снижается до нуля - включается. Эффективность устройства достигает 94%.

Бытует неправильное мнение, что для светодиода важным показателем является напряжение питания. Однако это не так. Для его исправной работы существенен прямой ток потребления (Iпотр.), который обычно бывает в районе 20 миллиампер. Величина номинального тока обусловлена конструкцией LED, эффективностью теплоотвода.

А вот величина падения напряжения, в большинстве своем определяется материалом полупроводника, из которого изготовлен светодиод, может доходить от 1,8 до 3,5В.

Отсюда следует, что для нормальной работы LED необходим именно стабилизатор тока, а не напряжения. В данной статье рассмотрим стабилизатор тока на lm317 для светодиодов .

Стабилизатор тока для светодиодов — описание

Конечно же, самым простым способ ограничить Iпотр. для LED является . Но следует отметить, что данный способ малоэффективен по причине больших энергетических потерь, и подходит лишь только для слаботочных LED.

Формула расчета необходимого сопротивления: Rд= (Uпит.-Uпад.)/Iпотр.

Пример : Uпит. = 12В; Uпад. на светодиоде = 1,5В; Iпотр. cветодиода = 0,02А. Необходимо рассчитать добавочное сопротивление Rд.

В нашем случае Rд = (12,5В-1,5В)/0,02А= 550 Ом.

Но опять, же повторюсь, данный способ стабилизации годится только для маломощных светодиодов.

Следующий вариант стабилизатора тока на более практичен. В ниже приведенной схеме, LM317 ограничивает Iпотр. LED, который задается сопротивлением R.

Для стабильной работы на LM317, входное напряжение должно превышать напряжение питания светодиода на 2-4 вольта. Диапазон ограничения выходного тока составляет 0,01А…1,5А и с выходным напряжением до 35 вольт.

Формула для расчета сопротивления резистора R: R=1,25/Iпотр.

Пример : для LED с Iпотр. в 200мА, R= 1,25/0, 2А=6,25 Ом.

Калькулятор стабилизатора тока на LM317

Для расчета сопротивления и мощности резистора просто введите необходимый ток:

Не забывайте, что максимальный непрерывный ток, которым может управляться LM317 составляет 1,5 ампер с хорошим радиатором. Для более больших токов используйте , который рассчитан на 5 ампер, а с хорошим радиатором до 8 ампер.

Если необходимо регулировать яркость свечения светодиода, то в статье приведен пример схемы с использованием стабилизатора напряжения LM2941.