Схема преобразователя для освещения салона люминесцентной лампой. Преобразователь напряжения для люминесцентной лампы

Преобразователь 12V - 220V для питания ЛДС из компьютерного БП.

[email protected]


Преобразователь используется для питания ламп дневного света (ЛДС) с электронным балластом. Электронные балласты - отдельные устройства, заменяющие низкочастотные дроссели. Как правило, такие балласты стоят в арматуре готовых светильников на ЛДС. Преобразователь гарантировано и надежно работает с балластами как мощных так и "слабых" ламп.
Преобразователь также используется для питания "экономичных" ЛДС цокольного типа; для автономного, яркого и экономичного освещения дома, гаража, салона авто.

Это двухтактный импульсный преобразователь, собранный на ШИМ-контроллере TL494 (отечественный аналог 1114ЕУ4), что позволяет сделать схему довольно простой. На выходе стоят высокоэффективные выпрямительные диоды удваивающие напряжение. На выходе, разумеется, постоянное напряжение, но для электронных балластов постоянное напряжение и полярность включения не актуальны, т.к. в схеме балласта на входе стоит диодный мост.



В качестве повышающего трансформатора в преобразователе используется готовый высокочастотный трансформатор из блока питания (БП) компьютера, который, как и почти все детали, использующиеся в данной схеме можно взять из неисправного или ненужного Блока как AT так ATX, в нашем преобразователе он будет выполнять работу в качестве повышающего.

Трансформатор можно намотать и самостоятельно: Для этого, находим подходящее ферритовое кольцо (внешний диаметр примерно 20-30 мм). Соотношение витков примерно 1:1:20 , где 1:1 - две половинки первичной обмотки (10+10 витков), а 20 - соответственно, вторичная 200 витков. Сначала мотается вторичная - равномерно 200 витков проводом диаметром 0,3-0,4 мм. Затем равномерно две половинки первичной обмотки (мотаем 10 витков, делаем средний отвод, затем в том же направлении мотаем оставшиеся 10 витков). Для полуобмоток использован многожильный, серебреный монтажный провод диаметром 0,8 мм (можно не загоняться и использовать другой провод, но лучше многожильный и мягкий).
Еще вариант изготовления (переделки) трансформатора - приобрести т.н. "электронный трансформатор" для 12 вольтовых галогенных ламп подсветки потолков и мебели (в магазинах светового оборудования). В нем стоит подходящий трансформатор на кольце. Нужно только снять вторичную обмотку, которая представляет собой десяток витков. А полуобмотки можно намотать иначе - кусок провода (длину рассчитаете) складываем вдвое и мотаем вдвое сложенным проводом; середину провода (место перегиба) разрезаем - получаем т.н. два конца (или два начала) обмоток. К концу одного провода припаиваем начало другого - получаем общую точку полуобмоток .

Транзисторы - мощные МОП (металл-окисел-полупроводник) полевые транзисторы, которые характеризуются меньшим временем срабатывания и более простыми схемами управления. Одинаково хорошо работают IRFZ44N, IRFZ46N, IRFZ48N (чем больше цифра - тем мощнее и дороже).
В преобразователе применены диоды HER307 (подойдут 304, 305, 306-е). Отлично работают отечественные КД213 (дороже, и габаритнее).
Конденсаторы на выходе можно и меньшей емкости, но с рабочим напряжением 200V. Использованы конденсаторы из того же компьютерного БП диаметром не более 18 мм (либо редактируйте рисунок печатной платы).
Микросхему установите на панель; так будет легче жить.

НАЛАЖИВАНИЕ сводится к правильной (внимательно) установке микросхемы в панель. Если не работает, проверьте наличие подводимого напряжения 12V. Проверьте или не перепутали местами R1 и R2. Всё должно работать.
Радиатор не обязателен, т.к. продолжительная работа не вызывает ощутимый нагрев транзисторов, но если возникнет желание поставить на радиатор, то, внимание, фланцы корпусов транзисторов не закорачивать через радиатор. Используйте изоляционные прокладки и шайбы втулки все от того же компьютерного БП. Хотя, для первого пуска радиатор может и не помешает; по крайней мере, транзисторы сразу не сгорят в случае ошибок монтажа или КЗ на выходе, или при "случайном" подключении лампы накаливания на 220V.
Питание схемы должно быть убедительным, т.к. потребляемый ток одного экземпляра "экономичной" ЛДС от герметичного кислотного аккумулятора составил 1,4 А при напряжении 11,5V; итого 16 Вт (хотя на упаковке лампы написано 26 Вт). Защиту схемы от перегрузки и переплюсовки можно реализовать через предохранитель и диод на входе.
Будьте осторожны! На выходе схемы высокое напряжение и очень серьезно может ударить. Конденсаторы держат заряд больше суток. Разрядных цепей на выходе нет. Закорачивание не допускается, разряжайте либо лампой накаливания на 220V, либо через сопротивление 1 мОм.

Фото преобразователя :



Для преобразователя в зависимости от габаритов трансформатора, автором сделано два рисунка печатной платы, (размер плат 50х55 мм).

Плата 1. () Плата 2. (скачать в формате Sprint Layout)


ПРЕОБРАЗОВАТЕЛЬ 12V - 220V С ИСПОЛЬЗОВАНИЕМ СТАНДАРТНОГО ТРАНСФОРМАТОРА.




Предлагаемая схема преобразователя отличается простотой изготовления, выполнена на минимальном количестве деталей. Каких-либо особенностей устройство не имеет, в наладке не нуждается. Преобразователь может быть использован в качестве резервного источника питания. Трансформатор применен готовый - от обычного блока питания, но в обратном включении. Он имеет две обмотки на 9V с максимальным током нагрузки 1,2... 1,5А и сетевую обмотку на 220V.

Преобразователь напряжения обеспечивает сетевое напряжение 220V 50 Гц на нагрузке мощностью до 5 Вт. Он состоит из задающего генератора с частотой 100 Гц и триггера-делителя на ИМС О, мощных МОП-ключей VT1 VT2 и 6-ваттного сетевого трансформатора с вторичными обмотками 2x9V , включенного как повышающий. При увеличении нагрузки до максимальной, выходное напряжение уменьшается с 250В до 200 В , что для большинства устройств является приемлемым. При этом потребляемый устройством ток увеличивается с 80 до 630 мА.


Еще схемы:

Трансформатор намотан на стержне из феррита (любого) диаметром 6-8 мм, диной 60 мм обмотанного изолентой .

I - 45 вит. п роводом диаметром 0,5 мм (или около того)

II - 25 вит. 0,25 мм (или около того)

III - 600 вит. 0,25 мм (или около того)

Однотактный импульсный преобразователь напряжения 12-220V.

Данный преобразователь напряжения позволяет подключать нагрузку мощностью до 100Вт. На холостом ходу ток, потребляемый преобразователем, не превышает 0,5А. Диапазон входных напряжений 9-15в. Рабочая частота преобразователя около 20 кГц.

Трансформатор изготавливается из двух магнитопроводов сложенных вместе из феррита марки М2000НМ1 типоразмер К32х20хб. Данные обмоток указаны в таблице.

Кол.в итков

ПЭЛ0 ,8...1,0

ПЭЛ0 ,25

ПЭЛ0 ,25

При изготовлении трансформатора сначала наматывается вторичная обмотка. Намотка выполняется виток к витку, в один слой с последующей изоляцией фторопластом или другим изолирующим материалом. Первичная обмотка наматывается двумя проводами одновременно (равномерно распределив витки на магнитопроводе ).


ПРЕОБРАЗОВАТЕЛЬ 12V/220V.

Преобразователь (иначе, DC/DC-конвертор)к нему можно подключать сетевые штатные зарядные устройства от мобильных телефонов. Предварительные расчеты показали, что с учетом потерь от двух преобразований общий КПД системы составит около 65% (если считать КПД каждого из устройств по 80%, что является типовым для импульсных преобразователей малой мощности).

Все устройство собрано на печатной плате размерами 40x60 мм (рис.2), внешний вид показан на фотографии в начале статьи. Выходной трансформатор: сердечник 2 кольца К20х12х6 феррит 2000-НМ1, повышающая обмотка 180 витков прово­дом ПЭЛШО 0,12 (наматывается первой), первичная обмотка 13 витков сложенным вдвое проводом ПЭЛ 0,6. С данным сердечником на выбранной частоте можно получить мощность около 25...30 Вт (для данной схемы доста­точно одного ферритового кольца). Сечение сердечника увели­чено для того, чтобы уменьшить количество витков в обмотках.



Настройки схема не требует.

Можно проверить качество намотанного трансформатора. При подаче входного питающего напряжения 12V ток потребления на «холостом ходу» с подключенным резистором R6 должен быть 40...45мА, напряжение на выходе - 200V.

Если это так, значит, все получилось. Если же ток «холостою хода» больше, проверьте частоту с по­мощью осциллографа на выводе 9 или 10 (период колебаний 40 мкс). Если все сошлось, то причина в трансформаторе: замыкание витков, не тот материал сердечника.

В рабочем режиме с подключенным зарядным устройством и телефоном потребляемый от сети 12V ток составляет 300...400мА (при разряженном в телефоне аккумуляторе ток больше), напряжение на выходе конвертера при этом режиме -160... 170V.



Источники:
С. Ю. Стебенев; Т. Носов
http://radio-hobby.org/ ;


Данная схема была взята из журнала Радиохобби №3 за 1999 год и представляет собой повышающий преобразователь напряжения, построенный по принципу блокинг-генератора. Генерация осуществляется за счет положительной обратной связи, управляющей работой ключевого транзистора. При этом на вторичной обмотке трансформатора генерируются коротковременные высоковольтные импульсы. В момент включения преобразователя лампа дневного света имеет высокое сопротивление, напряжение на ее электродах возрастает до 500 вольт, но как только лампа прогреется, напряжение снизится до 50 – 70 вольт. Поэтому крайне важно не включать преобразователь без нагрузки, поскольку напряжение на нем может вырасти до 1000 вольт, что способно вывести из строя трансформатор.


На рисунке показаны две схемы, верхняя - для транзистора структуры p-n-p, нижняя - для транзистора n-p-n. Естественно, что при смене структуры транзистора меняется также полярность конденсатора С1.

Трансформатор изготавливается на Ш-образном феррите 7х7 с магнитной проницаемостью НМ2000. Первой мотается вторичная обмотка, по схеме она подключается к ЛДС. Она содержит 240 витков, намотанных проводом ПЭВ-0,23. После чего обмотка хорошо изолируется и поверх нее мотаются обмотка коллектора – это 22 витка, намотанных проводом ПЭВ-0,56 и базовая обмотка, которая содержит 6 витков, намотанных проводом ПЭВ-0,23. Естественно, что диаметры проводов могут в небольших пределах варьироваться. Необходимый для изготавливаемого трансформатора сердечник можно раздобыть в старом дисковом телефонном аппарате, например ТА-68. Тогда с его каркаса необходимо предварительно удалить все старые обмотки. Также Ш-образный сердечник подходящего сечения магнитопровода можно взять из компьютерного блока питания. Важно! Между половинками Ш-образного сердечника необходим зазор – прокладка из немагнитного материала. Подойдет лист тонкой бумаги, один слой изоленты и т.п. Необходимо это для того, чтобы сердечник не намагнитился, иначе преобразователь через непродолжительное время перестанет работать.

Для правильной работы схемы необходимо настроить потребляемый преобразователем ток. Для этого необходимо знать мощность применяемой ЛДС. Допустим, ее мощность 20 ватт. Тогда потребляемый преобразователем ток должен быть 20Ватт/12в=1,66А. Такой ток выставляется подбором базового резистора R1.

Транзистор Т1 необходимо поместить на радиатор. Площадь радиатора выбирается таким образом, чтобы после часа работы за него можно было бы спокойно держаться. Вместо транзисторов КТ837Ф и КТ805БМ можно применить КТ818 и КТ819 соответственно.

Проверяется работоспособность преобразователя следующим образом. Если сразу после включения преобразователя лампа загорелась тускло, а через долю секунды разгорелась в полную силу, значит все работает нормально. Если же лампа продолжает работать тускло, значит необходимо подбирать R1, или даже менять транзистор. Провода от трансформатора до лампы должны быть как можно толще и короче, иначе лампа будет зажигаться плохо, или не зажигаться совсем.

А теперь немного фотографий.

ПИТАНИЕ ЛДС

Лампы дневного света всё ещё находят применение в осветительных приборах и данный преобразователь как раз и служит для питания экономичных ЛДС цокольного типа. Лампы дневного света на настоящее время признаны наиболее эффективным источником света. Обыкновенная лампа накаливания имеет эффективность около 10 Люмен/Ватт, в то время как эффективность ЛДС достигает 100 Люмен/Ватт. ЛДС потребляет почти в 7 раз меньше электроэнергии, чем обыкновенная лампа накаливания, и к тому-же имеет в 12 раз большее время работы. Конечно с каждым годом всё большее распространение получают сверхъяркие , даже под ЛДС их уже стали делать,

Но их окончательное превосходство ещё будет не скоро. Тем более, что за хорошие яркие светодиоды надо платить денюжку, а всяких ламп дневного света у многих, и у меня в том числе, валяется достаточно. Собрав эту схему мы получим автономное, яркое и экономичное освещение дома, гаража, салона автомобиля или походного фонарика.

Тех, кто ожидал увидеть в этой схеме микроконтроллеры с фазоимпульсным управлением и ШИМ-модуляцией, вынужден огорчить - это обычный вульгарный блокинг-генератор. Почему? Потому, что повторялся сотни раз разными людьми и отлично работает. И нечего всё усложнять. Помните, краткость - сестра таланта. Схема преобразователя для ЛДС не требует дорогостоящих деталей, к тому-же позволяет использовать неисправные лампы. На транзисторе Т1 КТ817, собран блокинг-генератор. Резистор на 3 кОм задает ток и режим работы транзистора. В результате работы генератора на верхней обмотке появляется импульсное высокое напряжение, поступающее на ЛДС.

Базовая обмотка трансформатора, намотанного на ферритовом сердечнике содержит 20 витков ПЭВ-2 0,5мм, коллекторная 40 витков того-же провода, а высоковольтная около 500.

Радиатор нужен, т.к. продолжительная работа вызывает ощутимый нагрев транзистора. В качестве него используем кусок алюминия со спичечный коробок. Нити накала лампы шунтированы перемычкой и выполняют функцию электрода, на который подают напряжение, необходимое для включения лампы. Происходит холодное зажигание с помощью резкого повышения напряжения на ЛДС при пуске, без предварительного подогрева электродов ЛДС.


Другой вариант преобразователя для ЛДС немного сложнее, но и стабильнее. Схема срисована с китайского походного фонаря.

Питается от 6 - 12В и потребляет ток до 0.5А. Транзистор лучше заменить на КТ805 - для надёжности. Настройка заключается в подборе тока и частоты, для получения максимальной яркости свечения ЛДС. Внимание, на выходе схемы высокое напряжение и оно может серьезно ударить! Будьте внимательны при сборке схемы. Представляется интересным использование в качестве трансформатора строчный трансформатор от телевизоров ТВС, как это реализовано .

Ценные рекомендации Александра: Из недостатков вышеуказанных схем стоит отметить отсутствие плавного прогрева нитей лампы, что уменьшит срок службы, хоть и могут применяться в таких схемах лампы с перегоревшей нитью но света от них значительно меньше чем от новой лампы, в таких схемах довольно быстро выгорает люминофор, низкое КПД, много энергии уходит просто в нагрев транзистора. При перегорании ЛДС или просто если при работе преобразователя отошел контакт лампы произойдёт работа на холостом ходу, без нагрузки, что может привести к перегреву транзистора и выходу его из строя, либо что еще хуже - к пробою высоковольтной обмотки трансформатора. Напряжение на высоковольтной обмотке на холостом ходу может достигать 1200 В, под нагрузкой примерно 80-120 В, зависит от мощности самой ЛДС. Для подобия плавного запуска ЛДС, ее надо подключить не сразу к высоковольтной обмотке,а через конденсатор (его емкость подбирают экспериментально). Конденсатор ставится только на провод фазы, а не на нулевой! Не перепутайте! После этого ЛДС начнет запускаться более плавно! При этом у нее несколько упадет яркость свечения. Но это все поправимо подбором резистора.

Что можно предпринять для предотвращения выхода из строя генератора?
1 - Сделать обратную связь.
2 - Самое простое: подключить параллельно самой ЛДС неоновую лампу или стартер через резистор на 1 мОм, (можно чуть меньше). На работе самой ЛДС неонка не отразиться, зато при внештатных ситуациях она вполне может сыграть роль нагрузки и тем самым спасти сам блокинг-генератор.

Можно применить в данных схемах готовый трансформатор. В 1-м варианте можно применить трансформатор из дежурной марки EEL-19 (или подобный) из компьютерного БП. Возможно так-же применение трансформатора ТВС от черно-белых ламповых телевизоров. Для второй схемы вполне подходят сетевые трансформаторы от лазерных принтеров и сетевые трансформаторы от ЖК мониторов. В этих случаях трансформаторы можно применять как есть без перемотки.

Расчёт тока потребления преобразователя можно вести по такой приближённой методике: Например лампе ЛБ-20 нужно 1,66 А, следовательно - 20 Ватт/12 в=1,66 А. Умножаем на кпд 90% - получится должен потреблять около 1.8 А.

Ещё одно: первый вариант схемы блокинг- генератора допускает применение радиатора меньшего размера - будет меньший нагрев транзистора, чем второй вариант схемы питания ЛДС. В первом варианте желательно поставить конденсатор на 0,01 мкф - 0,022 мкф, меду базой и эмиттером, тем самым уменьшив нагрев транзистора. Самая оптимальная мощность для таких схем 9-11 W! Но не более 20W. Нежелательно применять резисторы менее 0.5-1W. Применять в схеме КТ817 не рекомендую, так как он не предназначен для таких рабочих токов, соответственно в этой схеме с невысоким КПД, он еще больше упадет. Диод на входе я бы советовал поставить обязательно, так как даже при случайном кратковременном перепутывании полярности питания, произойдёт сгорание транзистора!

Схема такого преобразователя не новая, но она была переделана и в итоге переделки количество используемых радиодеталей резко сократилось.

Принципиальная схема преобразователя для лампы ЛДС представляет собой простой блокинг-генератор на мощном биполярном транзисторе MJE13007, опыт показал, что он справляется лучше всех, но возможна замена на более мощный, типа MJE13009. Такие транзисторы часто используют в компьютерных блоках питания ATX. Подстроечный резистор лучше использовать проволочный на пару ватт, его номинал 470 ом, но он может отклонится в ту или иную сторону на 20% - это на работу преобразователя не повлияет.

В качестве трансформатора использован Ш-образный ферритовый трансформатор из того-же компьютерного блока питания. Как правило у такого трансформатора 6 выводов со стороны понижающей обмотки и один отвод сверху. Именно к этому отводу подключаем плюс питания. Первый и последний вывод понижающей обмотки соответственно на коллектор транзистора и через резистор на базу, определенной полярности тут нету.

Далее собираем саму схему преобразователя для лампы. У сетевой обмотки трансформатора обычно 3 или 2 вывода, крайние выводы подключаем к лампе дневного освещения. Для плавного пуска можно последовательно к выводу подключить конденсатор на 400 вольт 1 микрофарад, хотя будет работать и без него. Транзистор нужно укрепить на небольшой теплоотвод.

Включаем схему и медленно вращаем подстроечный резистор, пока не добьемся максимального свечения лампы - это ограничительный резистор базового тока, который одновременно регулирует частоту. Хорошо собранный преобразователь не издает лишних звуков и имеет широкий диапазон питающих напряжений от 3,5 до 12 вольт (оптимальное - 6 вольт).

---->
---->

Преобразователь напряжения для люминесцентной лампы

И. НЕЧАЕВ, г. Курск

Этот преобразователь можно использовать для питания люминесцентных ламп мощностью до 20 Вт от аккумулятора или другого автономного источника напряжением 6... 12 В, например, в походных условиях. Его схема, подобная широко используемым во многих импортных портативных люминесцентных светильниках с батарейным питанием, показана на рис. 1.


Основа преобразователя - блокинг-генератор на транзисторе VT1 и трансформаторе Т1 - формирует короткие импульсы частотой 30...40 кГц и амплитудой 400 В, которые поступают на люминесцентную лампу EL1. Благодаря высокой частоте импульсов и инерционности люминофора мигание лампы совершенно незаметно.

При регулировке частоты с помощью переменного резистора R2 длительность импульсов остается постоянной. Изменяется их скважность, а с ней -яркость свечения лампы. Чем большее сопротивление введено, тем ниже частота и больше скважность, меньше яркость лампы и ток, потребляемый от источника питания (например, автомобильного аккумулятора). Во время испытания преобразователя с лампой F13W ток был равен 70 мА при минимальной и 800 мА при максимальной яркости.

Регулятор собран на односторонней печатной плате размерами 35x85 мм, фрагмент которой изображен на рис. 2.


На остальной ее части находятся (приклеены или укреплены винтами) трансформатор Т1 и транзистор VT1 с теплоотводом. Корпус переменного резистора R2 после пайки выводов также фиксируют клеем. Внешний вид смонтированной платы показан на рис. 3.


Ее помещают в корпус подходящего размера из изоляционного материала, выведя ось переменного резистора в отверстие на передней стенке. Лампу EL1 можно установить в стандартную или изготовленную самостоятельно из подручных материалов арматуру.

Вместо транзистора КТ841А можно применить КТ805А или КТ847А. Площадь теплоотвода должна составлять не менее 15 см2.

Магнитопровод трансформатора Т1 - броневой Б30 из феррита М1500НМ3. Он собран с немагнитным зазором 0,2...0,5 мм. Обмотка I - 24 витка ПЭВ-2 0,38...0,41 мм (в два провода), II - 7 витков такого же, но одиночного провода, III - 190 витков провода ПЭВ-2 0,18...0,2 мм. Последнюю надежно изолируют от других обмоток и магнитопровода лакотканью или изоляционной лентой.

К преобразователю можно подключать любые люминесцентные лампы мощностью 4...20 Вт, в том числе с перегоревшими нитями накаливания. Если мощность лампы менее 10 Вт, число витков обмотки III следует уменьшить.

Преобразователь сможет работать и при меньшем (вплоть до 6 В) напряжении питания, если число витков обмотки II уменьшить пропорционально напряжению. Однако его КПД заметно снижается, поэтому использовать лампы мощностью более 10 Вт в этом случае не рекомендуется.

При налаживании преобразователя резистор R1 подбирают таким образом, чтобы в правом (по схеме) положении движка переменного резистора R2 яркость свечения лампы субъективно воспринималась как номинальная, соответствующая ее подключению к сети по типовой схеме с "балластным" дросселем. Если перевод движка в противоположное положение уменьшает яркость недостаточно или чрезмерно, номинал переменного резистора следует соответственно увеличить или уменьшить.