Замена ультразвуковой мембраны в увлажнителе воздуха своими руками. Познавательные эксперименты с транзисторами Световой детектор влажности на одном транзисторе

Эта статья предназначена для тех, кто не считает себя специалистом по ремонту бытовой техники и не обладает глубокими знаниями по электро и радиотехнике, но хочет самостоятельно отремонтировать ультразвуковой увлажнитель воздуха.
Как известно, поломки бытовой техники бывают простыми и сложными. К простым можно отнести замену электрической вилки или всего шнура питания, замена предохранителя, замена электрических щеток электродвигателя и т.п. К одной из простых поломок ультразвукового увлажнителя воздуха можно отнести замену ультразвуковой мембраны . Именно этому вопросу и посвящена статья.
Для лучшего понимания, рассмотрим принцип действия ультразвукового увлажнителя.

Устройство конкретного увлажнителя может отличаться от приведенной схемы, но основные ее элементы будут присутствовать в том или ином виде.

Блок управления (1) это электронная схема, включающая в себя микроконтроллер с элементами, обеспечивающими его работу. Блок управления может быть выполнен в виде отдельного устройства или являться составной частью модуля, на котором размещены индикатор и клавиатура. Как следует из названия, этот блок управляет работой всего устройства. По его команде осуществляется индикация состояния увлажнителя и установка режимов его работы при помощи клавиатуры. Блок управления отслеживает состояние датчиков и в зависимости от их состояния меняет режим работы устройства. Например, при достижении необходимой влажности и при недостатке воды в резервуаре будет прекращена генерация тумана. В простых увлажнителях этот блок может отсутствовать, а датчики присоединяться непосредственно к генератору или другим устройствам. На рисунке такие связи показаны пунктирной линией.

Генератор (2) это электронная схема, формирующая электрический сигнал, необходимый для работы ультразвукового излучателя (3). Генератор состоит из собственно генератора, задающего электрические колебания нужной частоты и усилителя, обычно выполненного на транзисторе и усиливающего эти колебания перед подачей на ультразвуковую мембрану (3). Часто, причиной поломки увлажнителя, может быть выход из строя этого транзистора и/или элементов, обеспечивающих его работу. Обычно генератор выполнен как отдельный модуль.

Ультразвуковой излучатель (3) это пьезоэлектрический прибор, который под воздействием электрического тока вибрирует на ультразвуковой частоте. Ультразвуком называют такие звуковые волны, которые из-за своей высокой частоты не слышны для человеческого уха. Обычно полагают, что человек не слышит звук выше 20 кГц (20 тысяч колебаний в секунду). Многие ультразвуковые увлажнители работают на частоте 1,7 МГц (1 миллион 700 тысяч колебаний в секунду), естественно, такой звук не может услышать ни один человек.
Под воздействием таких звуковых волн, вода механическим образом превращается в туман – мельчайшие частички воды, имеющие почти комнатную температуру. В ультразвуковом увлажнителе не происходит кипения воды, выходящий «пар» паром не является.
Очень часто этот туман распространяется по помещению при помощи небольшого вентилятора (7), встроенного в увлажнитель.

Датчик уровня воды (4) Обычно выполнен в виде поплавка. Со временем подвижность поплавка может уменьшиться из-за скопления грязи, налета и т.п. Если поплавок не будет всплывать при наличии воды, то увлажнитель не будет производить туман, полагая, что воды нет. Восстановите подвижность поплавка, и работа устройства возобновится.

Блок питания (5) это электронная схема, предназначенная для получения напряжений, необходимых для питания всех устройств увлажнителя. Обычно является отдельным блоком.

Датчик влажности (6) . При наличие этого датчика увлажнитель сможет самостоятельно включаться и выключаться, поддерживая заданную влажность в помещении.

Вентилятор (7) обеспечивает распространение тумана по увлажняемому помещению.

Клавиатура и индикатор обычно выполняются в виде единого блока и служат для задания и отображения параметров работы ультразвукового увлажнителя воздуха.

Датчики. Число и количество датчиков может меняться в зависимости от модели увлажнителя. Самые распространенные датчики это - датчик наличия воды в поддоне (4), влажности (6) и температуры. Часто датчик наличия (уровня) воды присоединяется к генератору, и в случае недостаточного количества воды прекращается работа генератора и,как следствие, образование тумана.

Ремонт блока управления, блока питания и генератора неспециалистом сильно затруднен. Возможна лишь замена этих блоков целиком, а для этого необходимо правильно диагностировать поломку.
Возможно, в следующих статьях мы поговорим о том, как можно с определенной долей вероятности понять какой из блоков увлажнителя вышел из строя и подлежит замене.

Признаки выхода из строя ультразвукового пьезоэлемента в увлажнителе воздуха

Можно с уверенностью говорить о выходе пьезоэлемента из строя, если на нем есть трещина или отвалился хотя бы один провод, припаянный к излучателю.




Можно говорить о достаточно высокой вероятности выхода из строя ультразвуковой мембраны, если наблюдается слабое или полностью отсутствующее туманообразование при нормальной работоспособности всех других частей увлажнителя. В этом случае, так же высока вероятность выхода из строя генератора. Хотя это случай несколько неоднозначнее первого, можно заменить сначала излучатель, а если это не поможет, то генератор в сборе. И та, и другая деталь стоят не дорого и работа по их замене довольно проста. Конечно, есть небольшая вероятность, что после этих замен устройство не заработает, но она не велика. Зато у вас будет шанс сэкономить на визите в мастерскую, повозиться с техникой и узнать для себя что-то новое. Согласитесь, это не высокая цена за столько удовольствий!

Инструкция по замене ультразвукового излучателя (мембраны) на примере увлажнителя Polaris PUH 0206Di

1. Отключите увлажнитель от розетки.

2. Снимите резервуар с водой, слейте воду из нижней части увлажнителя, вытрите остатки воды тряпкой.

3. Вскройте корпус. Для этого выкрутите несколько винтов, соединяющих части корпуса в единое целое. Внимательно посмотрите на то, какими отвертками нужно пользоваться. Иногда все или один винт сделаны под «хитрую» (не крестовую и не шлицевую) отвертку.


4. Внимательно осмотрите внутренности. Обратите внимание на наличие или отсутствие характерного запаха горелой пластмассы, оплетки проводов и т.п., на почернения на корпусе, проводах и электронных устройствах. Обратите внимание на целостность проводов. Не должно быть ни одного свободно болтающегося конца провода. Осмотрите электронные платы на предмет целостности деталей, установленных на них.



5. Определите, где расположены основные элементы увлажнителя. Найдите генератор и ультразвуковой излучатель. Посмотрите, как они закреплены. Запишите, какие провода, какого цвета и в какое место присоединены к генератору и излучателю. При возможности сфотографируйте.

6. Отверните крепежные винты излучателя и отсоедините или отпаяйте провода излучателя от генератора. Возможно, для этого потребуется снять генератор.


7. Снимите уплотнительное резиновое или силиконовое кольцо с излучателя.

8. Осмотрите излучатель, обратите внимание на наличие трещин и ненадежное крепление проводов. Для выявления дефектов приложите небольшое усилие к излучателю и проводам. (В моем случае осматривать нечего, все и так понятно!)


9. Замерьте диаметр излучателя без уплотнительного кольца.

10. В случае обнаружения дефектов на излучателе купите новый и замените его. Где купить мембрану для ультразвуковаго увлажнителя воздуха?


11. Если дефекты не видны, то выбирайте:

а) собрать все назад, если не заработало, то отнести в мастерскую или купить новый увлажнитель

б) заменить излучатель, если не заработало, то отнести в мастерскую или купить новый увлажнитель

Видеоролик. Как зменить мембрану в увлажнителе своими руками.

Это простое самодельное устройство используется для воды или другой жидкости, В различных помещениях или в емкостях. Например,эти датчики очень часто используют для фиксации возможного затопления подвала или погреба талыми водами или на кухне под мойкой и т.п.


Роль датчика влажности выполняет кусок фольгированного стеклотекстолита с прорезанными в нем канавками,и как только в них попадет вода автомат отключит нагрузку от сети. Или если использовать тыловые контакты реле-автомат включит насос или или нужное нам устройство.

Сам датчик изготавливаем точно также как и в предыдущей схеме. Если жидкость попадет на контакты датчика F1 звуковой сигнализатор начнет издавать постоянный звуковой сигнал, а также загорится светодиод HL1.

Тумблером SA1 можно менять порядок индикации HL1 на непрерывное свечение светодиода в дежурной режиме.

Эту схему датчика влажности можно использовать в качестве сигнализатора дождя, переполнения какой-либо емкости с жидкостью, протечки воды и т.д. Питание схемы может быть подано от любого постоянного источника питания напряжением пять вольт.

Источником звукового сигнала является звукоизлучатель со встроенным звуковым генератором. Датчик влажности изготавливаем из полоски фольгированного текстолита, у которого сделана тонкая дорожка в фольге. Если датчик сухой, то звуковой сигнал не сигнализирует. В случае намокания датчика, мы сразу услышим прерывистый сигнал тревоги.

Питается конструкция от батарейки типа крона и ее хватит на два года, потому что во время режима ожидания, схема потребляет почти нулевой ток. Еще одним бонусом схемы можно считать тот момент, что практически любое число датчиков можно подключить параллельно входу и таким образом образом охватить всю контролируемую площадь за раз. Схема детектора построена на двух транзисторах типа 2N2222, соединенных способом Дарлингтона".

Перечень радиокомпонентов

R1, R3 - 470K
SW1 - кнопка
R2 - 15к
SW2 - переключатель
R4 - 22K
B1 - батарея типа крона
C1 - конденсатор емкостью 0.022 мкФ
T1, T2 - входные клеммы
PB1 - (RS273-059) пьезо-зуммер
Q1, Q2 - транзисторы типа 2N2222

Когда первый транзистор открывается, он сразу же отпирает второй, который включает пьезозуммер. При отсутствии жидкости оба транзистора надежно заперты и потребляется очень низкий ток от батареи питания. Когда зуммер включается, потребляемый ток увеличивается до 5 мА. Звукоизлучатели типа RS273-059 имеют в своем составе встроенный генератор. Если необходим более мощный сигнал тревоги, подключите несколько зуммеров параллельно или возьмите две батареи.

Печатную плату изготавливаем с размерами 3*5 см.

Тумблер test, подсоединяет 470 кОм сопротивление на вход, имитируя действие жидкости, тем самым проверяя работоспособность схемы. Транзисторы можно заменить на отечественные, типа КТ315 или КТ3102.

Автоматический датчик влажности предназначен для включения принудительной вентиляции помещения при повышенной влажности воздуха, может быть установлена на кухне, в ванной комнате, погребе, подвале, гараже. Его назначение - включить вентиляторы принудительного проветривания помещения, когда влажность в нём приближается к 95... 100 %.

Устройство отличается высокой экономичностью, надёжностью, а простота конструкции позволяет легко модифицировать его узлы под конкретные условия эксплуатации. Схема датчика влажности представлена на рисунке ниже.

Работает схема следующим образом. Когда влажность воздуха в помещении в норме, сопротивление датчика росы - газорезистора В1 не превышает 3 кОм, транзистор VT2 открыт, мощный высоковольтный полевой транзистор VT1 закрыт, первичная обмотка трансформатора Т1 обесточена. Также будет обесточена нагрузка, подключенная к разъёму ХР1.

Как только влажность воздуха приближается к точке выпадения росы, например, закипел оставленный без присмотра , ванная комната заполняется горячей водой, погреб подтапливается талыми, грунтовыми водами, отказал терморегулятор водонагревателя сопротивление газорезистора В1 резко жение переменного тока снимается с вторичной обмотки Т1 и поступает на мостовой диодный выпрямитель VD2. Пульсации выпрямленного напряжения сглаживаются оксидным конденсатором большой ёмкости С2. Параметрический стабилизатор напряжения постоянного тока простроен на составном транзисторе VT3 с большим коэффициентом передачи тока базы типа КТ829Б, стабилитроне VD5 и балластном резисторе R6.

Конденсаторы СЗ, С4 уменьшают пульсации выходного напряжения. К выходу стабилизатора напряжения могут быть подключены вентиляторы с рабочим напряжением 12... 15В, например,«компьютерные». К гнезду ХР1 могут быть подключены вентиляторы общей мощностью до 100 Вт, рассчитанные на напряжение питания 220 В переменного тока. В разрыв цепи питания понижающего трансформатора Т1 и высоковольтной нагрузки установлен мостовой выпрямитель VD1. На сток полевого транзистора поступает пульсирующее напряжение постоянного тока. Каскад на транзисторах VT1, VT2 питается стабилизированным напряжением +11 В, заданным стабилитроном VD7. Напряжение на этот стабилитрон поступает по цепочке R2, R3, VD4, HL2. Такое схемное решение позволяет открывать полевой транзистор полностью, что значительно снижает рассейемую на нём мощность.

Транзисторы VT1, VT2 включены как триггер Шмитта, что исключает нахождение полевого транзистора в промежуточном состоянии, чем предотвращается его перегрев. Чувствительность датчика влажности задаётся подстроечным резистором R8, а при необходимости и подбором сопротивления резистора R7. Варисторы RU1 и RU2 защищают элементы устройства от повреждений всплесками напряжения сети. Светодиод HL2 зелёного цвета свечения показывает наличие напряжения питания, а красный светодиод HL1 сигнализирует о высокой влажности и включении устройства в режим принудительного проветривания помещения.

К устройству можно подключить до 8 низковольтных вентиляторов с током потребления до 0,25 А каждый и, или несколько вентиля- торов с напряжением питания 220 В. Если с помощью этого устройства будет необходимо управлять более мощной нагрузкой с напряжением питания 220 В, то к выходу стабилизатора напряжения можно подключить электромагнитные реле, например, типа G2R-14-130, контакты которого рассчитаны на коммутацию переменного тока до 10 А при напряжении 250 В. Параллельно резистору R8 можно установить терморезистор с отрицательным ТКС, сопротивлением 3,3...4,7 кОм при 25°С, размещённым, например, над газовой или электроплитой, что позволит включать вентиляцию также и при росте температуры воздуха выше 45...50 °С, когда конфорки плиты работают на полную мощность.

На месте трансформатора Т1 можно установить любой понижающий трансформатор с габаритной мощностью не менее 40 Вт, вторичная обмотка которого рассчитана на величину тока не менее тока низковольтной нагрузки. Без перемотки вторичной обмотки «Юность», «Сапфир». Также подойдут унифицированные трансформаторы ТПП40 или ТН46-127/220-50. При самостоятельном изготовлении трансформатора можно использовать Ш-образный магнитопровод сечением 8,6 см2 Первичная обмотка содержит 1330 витков провода диаметром 0,27 мм.

Вторичная обмотка 110 витков обмоточного провода диаметром 0,9 мм. Вместо транзистора КТ829Б подойдёт любой из серий КТ829, КТ827, BDW93C, 2SD1889, 2SD1414. Этот транзистор устанавливают на теплоотвод, размер которого будет зависеть от тока нагрузки и величине падения напряжения коллектор-эмиттер VT3. Желательно выбрать такой теплоотвод, с которым температура корпуса транзистора VT3 не превышала бы 60°С.

Если напряжение на обкладках конденсатора С2 при подключенной к выходу стабилизатора нагрузке будет больше 20 В, то для уменьшения рассеиваемой VT3 мощности можно отмотать от вторичной обмотки трансформатора несколько витков. Полевой транзистор IRF830 можно заменить на КП707В2, IRF422, IRF430, BUZ90A, BUZ216 . При монтаже этого транзистора необходима его защита от пробоя статическим электричеством . Вместо SS9014 можно применить любой из серий КТ315, КТ342, КТ3102, КТ645, 2SC1815. При замене биполярных транзисторов учитывайте различия в цоколёвках.

Диодные мосты KBU можно заменить на аналогичные КВР08, BR36, RS405, KBL06. Вместо 1N4006 можно использовать 1N4004 - 1N4007, КД243Г, КД247В, КД105В. Стабилитроны: 1N5352 - КС508Б, КС515А, КС215Ж; 1N4737A - КС175А, КС175Ж, 2С483Б; 1 N4741А - Д814Г, Д814Г1, 2С211Ж, КС221В.

Светодиоды могут быть любые общего применения, например, серий АЛ307, КИПД40, L-63. Оксидные конденсаторы - импортные аналоги К50-35, К50-68. Варисторы - любые малой или средней мощности на классификационное рабочее напряжение 430 В, 470 В, например, FNR-14K431, FNR-10K471. Чувствительный к влажности воздуха газорезистор ГЗР-2Б взят из старого отечественного видеомагнитофона «Электроника ВМ-12». Аналогичный газорезистор можно найти и в других неисправных отечественных и импортных видеомагнитофонах или в старых кассетных видеокамерах. Этот газорезистор обычно прикручен к металлическому шасси лентопротяжного механизма. Его назначение - блокировать работу аппарата при запотевании лентопротяжного механизма, что предотвращает заматывание и порчу магнитной ленты. Устройство можно смонтировать на печатной плате размерами 105x60 мм, Газорезистор предпочтительнее разместить в отдельной коробочке из изоляционного материала с отверстиями, устанавливаемой в месте попрохладней. Также рекомендуется прикрутить его к небольшой металлической пластине, можно через тонкую слюдяную изолирующую прокладку. Для защиты смонтированной платы от влаги, монтаж и печатные проводники покрывают несколькими слоями лака ФЛ-98, МЛ-92 или цапонлаком.

Газорезистор ничем закрашивать не надо. Для проверки устройства на работоспособность можно просто выдохнуть на газорезистор воздух из лёгких или, поднести поближе ёмкость с кипятком. Через несколько секунд вспыхнет светодиод HL1 и подключенные в качестве нагрузок вентиляторы начнут бороться с повышенной влажностью. В дежурном режиме устройство потребляет ток от сети около 3 мА, что очень немного. Поскольку устройство потребляет в дежурном режиме мощность менее 1 Вт, то его можно эксплуатировать круглосуточно, не опасаясь за расход электроэнергии. Так как устройство частично имеет гальваническую связь с напряжением сети переменного тока 220 В, то при настройке и эксплуатации устройства следует соблюдать соответствующие меры предосторожности.

В результате многочисленных экспериментов появилась вот эта схема датчика почвы на одной единственной микросхеме. Подойдёт любая из микросхем: К176ЛЕ5, К561ЛЕ5 или CD4001A.

Датчик влажности воздуха, схема и чертежи которого прилагаются, дает возможность полностью автоматизировать процесс контроля и управления относительной влажностью воздуха в любом помещении. Данная схема датчика влажности дает возможность измерять относительную влажность в диапазоне от 0–100%. При очень высокой точности и стабильности параметров

Светозвуковой сигнализатор выкипания воды. - Радио, 2004, №12, стр. 42, 43.
. - Схемотехника, 2004, №4, стр. 30-31.
Константа» в погребе. - САМ, 2005, № 5, стр. 30, 31.

Датчики температуры (термодатчики) для теплицы

В качестве преобразователей температуры в электрический сигнал используются различные термодатчики - терморезисторы, термотранзисторы и т. д. Сопротивление этих датчиков пропорционально (прямо или обратно) температуре окружающей среды.

Для самостоятельного изготовления термодатчиков можно использовать отрицательное свойство транзисторов - уход их параметров от температуры. В транзисторах ранних выпусков этот уход был настолько велик, что оставленный на солнце транзисторный радиоприемник начинал издавать искаженный звук, а через некоторое время или замолкал вообще, или просто хрипел.

Это происходило оттого, что нагревшись, транзисторы начинали пропускать существенно больший ток, рабочие точки транзисторов смещались и радиоприемник переставал работать.

Это свойство транзисторов с успехом можно использовать при изготовлении своими руками термодатчиков для теплицы и не только их. И чем больше уход параметров транзистора от температуры, тем более чувствительным получится датчик. Для термодатчиков подойдут транзисторы ранних выпусков - МП15А, МП16Б, МП20Б, МП41А, МП42Б, МП25А.Б. МП26А.Б, МП416Б, ГТ308Б, П423, П401-403.

При использовании их в качестве датчиков не требуется какой-либо доработки и преобразование температуры в электрический сигнал обеспечивается определенным включением транзистора в электронную схему. Чтобы получить представление о работе транзистора в качестве термодатчика, проведем небольшой эксперимент.

Соберем схему своими руками по рис. З.а (цоколевка большинства перечисленных транзисторов показана на рис. 3,б) и подключим к источнику питания. Если под рукой не окажется сетевого источника питания, можно использовать батарею «Крона» или две последовательно включенные батареи от карманного фонаря. Вольтметром будем контролировать напряжение на резисторе 5,1 кОм.

Отметим величину напряжения при подключении к схеме источника питания. Подогреем корпус транзистора паяльником не касаясь его - напряжение на резисторе начинает расти. Отведем паяльник в сторону - через некоторое время стрелка вольтметра вернется на прежнее место. Если постоянный резистор 5,1 кОм заменить на переменный, получим возможность изменять уровень напряжения на подвижном контакте при заданной температуре среды в теплице .

Но первый эксперимент показывает, что изменение напряжения на резисторе 5,1 кОм мало, а транзистор приходится сильно нагревать. Если увеличить это изменение напряжения при небольшом нагреве транзистора, то в принципе решается задача включения соответствующей нагрузки.

Увеличить это изменение напряжения можно, если собрать схему по рис. 4,а (на рис. 4,б показана цоколевка усилительного транзистора). Резистор 5,1 кОм заменим на 4,7 кОм, так как часть тока будет ответвляться в базу транзистора усилительного каскада.

Вращением движка потенциометра 4,7 кОм необходимо добиться максимального напряжения на колллекторе транзистора КТ315. Опять подогреем транзистор МП25Б - напряжение на коллекторе упадет почти до нуля и довольно быстро, причем при меньшем нагреве термодатчика. Уберем паяльник - напряжение так же быстро восстановится.

Из этих нехитрых экспериментов можно сделать следующие выводы.

  1. При нагреве транзистора МП25Б ток через него меняется - это регистрирует вольтметр в виде изменения напряжения на резисторе, включенном последовательно с транзистором МП25Б. Значит, этот транзистор может быть использован в качестве термодатчика при повышении температуры окружающей среды.
  2. Чтобы получить командный сигнал, т. е. большое изменение напряжения за короткий промежуток времени при малом нагреве (при малом изменении температуры окружающей среды), необходим усилитель, управляемый термодатчиком.

Из этих выводов следует, что на основе транзистора МП25Б, используемого в качестве термодатчика, и усилителя напряжения с большим коэффициентом усиления, можно создать электронный термометр для контроля и регулирования температуры внутри теплицы при ее повышении. Попросту говоря, такая схема в состоянии вовремя включить вентилятор и проветрить теплицу, оранжерею или замкнутый объем, где установлена гидропонная установка - застекленный балкон или лоджия.

А как быть, если температура среды понизится и нужно включать не вентилятор, а калорифер, чтобы поднять температуру?

Поменяем местами термодатчик и переменный резистор и включим последовательно с ним еще один на 36 кОм (рис. 5). С помощью движка потенциометра добьемся максимального напряжения на коллекторе транзистора KT315.

Нальем в чашку немного холодной воды, бросим кусочки колотого льда и опустим в воду термометр и транзистор МП25Б так, чтобы вода не касалась выводов транзистора. Через 1...2 мин корпус транзистора остынет и вольтметр покажет быстрый спад напряжения почти до нуля.

Достанем кусочки льда из чашки и дольем теплой воды до прежнего уровня. Через некоторое время температура воды и корпуса транзистора восстановится и вольтметр отметит быстрый рост напряжения до первоначального уровня. Схема вернулась в исходное положение.

Из этих опытов следует: при охлаждении транзистора МП25Б ток через него также меняется, но в обратную сторону и при перемене места подключения транзистора МП25Б в прежней схеме его можно использовать в качестве термодатчика при понижении температуры.

И здесь напрашивается основополагающий вывод: на основе транзистора МП25Б, используемого в качестве термодатчика и усилителя с большим коэффициентом усиления, можно создать электронный термометр для контроля и регулирования температуры в теплице при ее понижении. Эта схема вовремя включит калорифер или систему обогрева почвы.

Усилитель же с большим коэффициентом усиления необходим для включения нагрузок при малейшем изменении температуры (0,5...2 °С). Датчики воздушных термометров представляют собой собственно транзисторы указанных выше типов. Необходимо отметить, что чем выше статический коэффициент передачи тока транзистора (коэффициент усиления), тем чувствительнее датчик.

Датчик температуры почвы - такой же транзистор, помещенный в стеклянную пробирку и залитый эпоксидным клеем до середины выводов, к которым припаяны отводящие провода. Места паек и выводы необходимо закрыть отрезками виниловых трубочек, плотно надвинув их до упора в корпус транзистора. Провода пропускаются через резиновую шайбу (можно использовать резиновые клапаны от кранбукс), которая плотно вставляется в горло пробирки. Датчик готов.

Для многих производственных процессов очень важно поддерживать необходимый микроклимат, в частности, определенное содержание паров воды в воздухе или газе. Для этой цели используются такие приборы, как гигрометр и гигростат. Первые измеряют содержание водяных паров, вторые поддерживают их необходимый уровень. На рисунке 1 показано устройство Роса-10, используемое как в промышленности, так и сельском хозяйстве.

Рисунок 1. Отечественные приборы Роса-10 в различном исполнении

Но датчик влажности применяется не только в производстве (например, для определения характеристик древесины), с его помощью можно регулировать сухость воздуха в помещении (рис.2), измерять насыщение почвы водой и т.д. Предлагаем рассмотреть устройство и принцип работы таких приборов. Это существенно поможет их правильному применению в бытовой сфере, например, чтобы сделать вытяжной вентилятор в ванную, терморегулятор для бани или самодельный датчик температуры и влажности в теплицу.


Рисунок 2. Все современные климатические системы снабжены модулем, измеряющим влажность

Прежде чем перейти к теории, определимся с терминологией.

Терминология

Под абсолютной влажностью подразумевают содержание воды (в граммах) в одном кубометре воздуха. Соответственно, единица измерения этой величины – г/м3. Состояние, при котором содержание воды в газе достигает максимальной величины (100%), называется порогом максимального насыщения или влагоемкостью. При достижении этого предела начинается процесс конденсации.

Необходимо заметить, что влагоемкость прямо пропорциональна температуре: чем она выше, тем большее количество воды может содержаться в том же объеме газа. Именно поэтому цифровой или аналоговый модуль измерения влажности практически всегда снабжен датчиком температуры.

Перейдем к определению, описывающему относительную влажность. Эта величина показывает соотношение влагоемкости и абсолютной влажности, соответствующие температурному режиму на момент измерения. Состояние, при котором эти величины сравняются, называется «точка росы».

Теперь, когда мы определились с терминологией, рассмотрим существующие типы датчиков и узнаем, по какому принципу работает каждый из них.

Виды датчиков и их принцип работы

Наибольшее распространение получили четыре типа приборов, каждый из них имеет свою специфику эксплуатации:



Рисунок 4. Датчик воды SYH-2RS

Поскольку детекторы данного типа чаще всего используются в любительских схемах, мы еще вернемся к рассмотрению их устройства.



Рисунок 6. Аспирационный измеритель влажности МВ-4М

Мы привели наиболее распространенные виды детекторов, на самом деле их значительно больше. Например, есть еще оптический датчик, где используется рассеивание света при образовании конденсата по достижению точки росы, термический (задействованы два терморезистора в открытой и герметичной камере), канальный и т.д.

Устройство детекторов резистивного типа

Теперь, как и обещали, рассмотрим конструктивные особенности сенсоров резистивного типа на примере модели SYH-2RS.


Рисунок 7. Устройство резистивного сенсора

1) – вид сбоку; 2) – вид сверху.

Обозначения:

  • а – керамическая подложка;
  • b – напыленные электроды;
  • c – гигроскопичное покрытие на основе оксида алюминия.

Как видите, конструкция сенсора довольно простая, этим и обуславливает низкая стоимость устройств данного типа. А если еще принять во внимание взаимозаменяемость таких элементов, то неудивительно, что в большинстве самодельных устройств для дома (например, датчик протечки воды) радиолюбители предпочитают использовать резистивные сенсоры.

Краткий обзор имеющихся на рынке устройств их применение

Рассмотрим приборы, которые могут быть полезны в быту, начнем с реле влажности воздуха HIG-2 (рис.8), служащего для управления вытяжкой в ванной.


Рисунок 8. Модуль HIG-2 с релейным выходом

Основные характеристики:

  • устройство запитывается от домашней электросети с напряжением 220 В;
  • срабатывание при относительной влажности от 60% до 90% (устанавливается);
  • допустимый ток нагрузки – не более 2 А;
  • время работы вентилятора после срабатывания задается таймером (2-20 мин.).

Как подключить датчик влажности HIG-2?

Для правильного подключения устройства достаточно придерживаться схемы, приведенной в инструкции к прибору, она показана на рисунке 9.


Рисунок 9. Схема подключения вентилятора к модулю контроля влажности

На клемнике прибора есть соответствующие обозначения, поэтому сложностей эта операция не вызовет. Если электропроводке квартиры или на самом вентиляторе не предусмотрено заземление, то его можно не подключать, так же не обязательно ставить на вход питания выключатель.

Тех, кого увлекает концепция «умного дома», наверняка заинтересует внешний сенсор Mi Smart (рис. 10). При установке на смартфон специального приложения можно получать информацию о температуре и влажности в квартире. Если задать в такой программе определенные параметры микроклимата, то она известит, если условия будут нарушены.


Рисунок 10. Беспроводной сенсор производства компании Xiaomi

Заметим, что у этого устройства довольно низкая погрешность измерений (для влажности она в пределах 3%, что касается температуры, то точность показаний порядка 0,3 С°). Существенный недостаток – нерусифицированное программное обеспечение, но данная проблема будет решена в ближайшее время.

Тем, кто хочет сделать для теплицы капельный полив с датчиком влажности, можно порекомендовать сенсор Gardena (рис. 11), который регулирует работу клапанов систем этого же производителя.


Рисунок 11. Сенсор Gardena, управляющий системой полива

Для питания устройства используются две алкалиновые батарейки, их заряда хватает на 10-12 месяцев непрерывной работы.

Теперь рассмотрим характеристики промышленной модели цифрового измерителя Ивит-М.Т (рис. 12), который может применяться в производственной сфере, сельском хозяйстве или ЖКХ.


Рисунок 12. Измеритель влажности с выносным датчиком из серии ИВИТ-М

Перечень основных характеристик:

  • для питания прибора необходимо напряжение 18-36 В;
  • относительная влажность может быть измерена в диапазоне от 5 % до 95 % (максимальная погрешность не более 4 %);
  • измерение температуры воздуха в пределах от -40 С° до 50 С° (модификации Н1, V) или от -40С° до 60°(модели Н2, К1, К2), точность 2 С°;
  • прибор может эксплуатироваться в температурном диапазоне от -40 С° до 50 С°.

Любителей поэкспериментировать наверняка заинтересуют сенсоры DHT11 и DHT22 (рис. 13), которые используются вместе с платформой Ардуино. В сети можно найти много интересных решений на этой элементной базе.


Рисунок 13. Сенсоры влажности для платформы Arduino

a) DHT22; b) DHT11.

Как видно из рисунка внешний вид этих датчиков практически идентичен, это же касается и распиновки. Технические характеристики сенсоров очень похожи, за исключением точности и диапазона измерений. Приведем эти данные.

Основные технические параметры DHT11:

  • подключение к источнику постоянного напряжения 3-5 В;
  • в процессе запроса пиковый уровень потребляемого тока не более 2,5 мА;
  • границы измеряемой влажности и температуры – 20-80 % и 0-50 С°, погрешность 5% и 2 С°;
  • частота выборки 1 Гц, то есть получать данные можно один раз в течение секунды.

Теперь сравним эти параметры с более точной моделью DHT22:

  • напряжение источника питания остается без изменений, как и потребляемы ток при передаче данных;
  • влажность измеряется во всем диапазоне 0-100 %, погрешность в пределах 2-5 %;
  • границы замеряемой температуры существенно расширены, по сравнению с предыдущей моделью, минимальная -40 С°, максимальная +125 С°.

Стоимость этих приборов вполне доступна на Алиэкспрессе их можно заказать с бесплатной доставкой по $1.28 (DHT11) и $4,9 (DHT22). Если покупать в России цена будет примерно в полтора-два раза дороже. Что касается базовой платформы, то плату Arduino Uno можно приобрести в Поднебесной за $25-$48 (стоимость зависит от комплектации). Программное обеспечение и прошивки скачиваются бесплатно.

Вода - это жизнь. Если она в кране, или в радиаторе отопления, это благо. А если она на полу вашей квартиры, или на потолке соседа снизу - это большие финансовые и моральные неприятности. Разумеется, необходимо регулярно проверять систему водоснабжения и отопления на предмет коррозии или трещин в пластиковых трубах. Однако прорыв воды обычно происходит внезапно, без признаков надвигающейся опасности. Хорошо, если в этот момент вы дома, и не спите. Но, по закону подлости, протечки возникают как раз в ночное время, или когда вас нет дома.

Простые правила борьбы с этой проблемой (особенно это касается старого жилого фонда, с изношенными сетями):

  • Регулярно осматривайте водопроводные трубы и элементы системы отопления на предмет дефектов, появления точечной ржавчины, герметичности соединений, и прочее.
  • Уходя из дому, перекрывайте входную задвижку на стояке.
  • Вне отопительного сезона закрывайте краны на батареях (если они имеются).
  • Используйте систему защиты от протечек.

Последний пункт списка мы рассмотрим подробнее.

Как сигнализировать об утечке воды

Решение вопроса пришло в быт из яхтенного мира. Поскольку судовые помещения нижнего яруса (особенно это касается трюмов) находятся ниже ватерлинии, в них регулярно скапливается вода. Последствия понятны, вопрос в том, как с этим бороться. Ставить для контроля отдельного вахтенного матроса нерационально. Тогда кто даст команду на включение откачной помпы?

Существуют эффективные тандемы: датчик наличия воды, и автоматическая помпа. Как только датчик обнаружит заполнение трюма, включается мотор помпы, и производится откачка.

Датчик воды - не что иное, как обычный поплавок на шарнире, соединенный с выключателем помпы. Когда уровень воды поднимается на 1–2 см, одновременно срабатывает сигнализация и мотор откачной помпы.

Удобно? Да. Безопасно? Разумеется. Однако такая система вряд ли подойдет для жилого дома.

  • Во-первых, если вода достигнет уровня 1–2 см по всей площади помещения, она через порог входной двери побежит на лестничную площадку (не говоря о соседях снизу).
  • Во-вторых, откачная помпа совершенно не нужна, поскольку необходимо немедленно найти и локализовать причину прорыва.
  • В-третьих, поплавковая система для помещений с плоским полом неэффективна (в отличие от плавсредств с килеватой формой днища). Пока наберется «нужный» для срабатывания уровень, от сырости развалится дом.

Стало быть, нужна более чувствительная система сигнализации от протечек. Это вопрос датчиков, а исполнительная часть бывает двух видов:

1. Только сигнализация. Она может быть световой, звуковой, или даже соединенной с GSM сетью. В этом случае вы получите сигнал на мобильный телефон, и сможете дистанционно вызвать аварийную бригаду.

2. Отключение подачи воды (к сожалению, такая конструкция не работает с системой отопления, только водопровод). После главной задвижки, которая подает воду от стояка в квартиру (не важно, до или после прибора учета), установлен электромагнитный клапан. При подаче сигнала от датчика, вода перекрывается, и дальнейший потоп останавливается.

Естественно, система отключения воды еще и сигнализирует о проблеме любым из вышеуказанных способов. Эти устройства в широком ассортименте предлагаются сантехническими магазинами. Казалось бы, материальный ущерб от потопа потенциально выше цены спокойствия. Однако большинство граждан живет по принципу «пока гром не грянет, мужик не перекрестится». А более прогрессивные (и рачительные) владельцы жилья, изготавливают датчик протечки воды своими руками.

Принцип работы датчиков протечек

Говоря о блок схеме - все очень просто. Некий элемент фиксирует жидкость в точке его размещения, и подает сигнал в исполнительный модуль. Который, в зависимости от настроек может подавать световые или звуковые сигналы, и (или) дать команду на перекрытие задвижки.

Как устроены датчики

Поплавковый механизм рассматривать не будем, поскольку в домашних условиях он не эффективен. Там все просто: основание закреплено на полу, на шарнире подвешен поплавок, который при всплытии замыкает контакты выключателя. Подобный принцип (только механический) применяется в бачке унитаза.

Чаще всего применяется контактный датчик, который использует естественную способность воды проводить электрический ток.

Разумеется, это не полноценный включатель, через который проходит напряжение 220 вольт. К двум контактным пластинам (см. иллюстрацию) подключается чувствительная схема, которая фиксирует даже небольшую силу тока. Датчик может быть отдельным (как на фотографии выше), или встроенным в общий корпус. Такое решение применяется на мобильных автономных датчиках, работающих от батарейки или аккумулятора.

Если у вас нет системы «умный дом», а вода подается без всяких электромагнитных клапанов, именно простейший датчик со звуковой сигнализацией можно использовать в качестве стартового варианта.

Самодельный датчик простейшей конструкции

Несмотря на примитивность, датчик достаточно эффективен. Домашних мастеров эта модель привлекает копеечной стоимостью радиодеталей, и возможностью сборки буквально «на коленке».

Базовый элемент (VT1) - NPN транзистор серии BC515 (517, 618 и им подобные). С его помощью подается питание на звуковой сигнализатор (B1). Это простейший готовый зуммер со встроенным генератором, который можно приобрести за копейки, или выпаять из какого-нибудь старого электроприбора. Питание требуется порядка 9 вольт (конкретно для этой схемы). Есть варианты под 3 или 12 вольтовые батарейки. В нашем случае используется элемент питания типа «Крона».

Как работает схема

Секрет в чувствительности перехода «коллектор-база». Как только через него начинает протекать минимальный ток, открывается эмиттер, и подается питание на звуковой элемент. Раздается писк. Параллельно можно подключить светодиод, добавляя визуальную сигнализацию.

Сигнал к открытию коллекторного перехода дает та самая вода, о наличии которой надо сигнализировать. Из металла, не подверженного коррозии, изготавливаются электроды. Это могут быть два кусочка медной проволоки, которую можно просто облудить. На схеме точки подключения: (Электроды).

Собрать такой датчик можно на макетной плате.

Затем прибор помещается в пластиковую коробочку (можно в мыльницу), в донышке которой проделаны отверстия. Желательно, чтобы при попадании воды, она не касалась монтажной платы. Если хочется эстетики, печатную плату можно вытравить.

Недостаток такого датчика - различная чувствительность к разным типам воды. Например, дистиллят от протекающего кондиционера может остаться незамеченным.

Исходя из концепции: недорогой автономный прибор, его нельзя интегрировать в единую систему защиты вашего дома, даже самодельную.

Более сложная схема, с регулятором чувствительности

Себестоимость такой схемы тоже минимальная. Выполняется на транзисторе КТ972А.

Принцип работы аналогичен предыдущему варианту, с одним отличием. Сформированный сигнал о наличии протечки (после открытия эмиттерного перехода транзистора), вместо сигнального устройства (светодиод или звуковой элемент), подается на обмотку реле. Подойдет любое слаботочное устройство, типа РЭС 60. Главное, чтобы напряжение питания схемы соответствовало характеристикам реле. А уже с его контактов, информацию можно подавать на исполнительное устройство: система «умный дом», сигнализация, GSM передатчик (на мобильный телефон), аварийный электромагнитный клапан.

Дополнительное преимущество такого исполнения - возможность настройки чувствительности. С помощью переменного резистора регулируется ток перехода «коллектор-база». Вы можете настроить порог срабатывания от появления росы или конденсата, до полноценного погружения датчика (контактной пластины) в воду.

Датчик протечки на микросхеме LM7555

Этот радиоэлемент является аналогом микросхемы LM555, только с меньшими параметрами потребления энергии. Информация о наличии влаги поступает с контактной площадки, обозначенной на иллюстрации, как «датчик»:

Для повышения порога срабатывания, ее лучше выполнить в виде отдельной пластины, соединенной с основной схемой проводами с минимальным сопротивлением.

Оптимальный вариант на фото:

Если вы не хотите тратить деньги на покупку подобного «концевика», его можно вытравить самостоятельно. Только обязательно покройте оловом контактные дорожки, для повышения коррозийной устойчивости.

Как только между дорожками появляется вода, пластина становится замкнутым проводником. Через встроенный в микросхему компаратор начинает протекать электрический ток. Напряжение быстро возрастает до порога срабатывания, при этом открывается транзистор (который выполняет роль ключа). Правая часть схемы - командно исполнительная. В зависимости от исполнения, происходит следующее:

  1. Верхняя схема. Срабатывает сигнал на так называемом «бузере» (пищалке), и светится опционально подключенный светодиод. Есть еще один вариант использования: несколько датчиков объединяются в единую параллельную схему с общим звуковым сигнализатором, а светодиоды остаются на каждом блоке. При срабатывании звукового сигнала, вы безошибочно определите (по аварийному свечению), какой именно блок сработал.
  2. Нижняя схема. Сигнал от датчика поступает на электромагнитный аварийный клапан, расположенный на стояке подачи воды. В этом случае, вода перекрывается автоматически, локализуя проблему. Если вас в момент аварии нет дома, потоп не случится, материальные потери будут минимальными.

Информация: Разумеется, можно своими руками изготовить и запорный клапан. Однако это сложное устройство лучше приобрести в готовом виде.

Схему можно выполнить по макету печатной платы, которая одинаково подойдет как для LM7555, так и для LM555. Устройство питается от напряжения 5 вольт.

Важно! Блок питания должен быть с гальванической развязкой от 220 вольт, чтобы опасное напряжение не попало в лужу воды при протечке.

На самом деле, идеальный вариант - использование зарядного устройства от старой мобилки.

Себестоимость подобной самоделки не превышает 50–100 рублей (на покупку деталей). При наличии в запасниках старой элементной базы, можно свести затраты к нулю.

Корпус - на ваше усмотрение. При таких компактных размерах, найти подходящую коробочку не составит труда. Главное, чтобы от общей платы до контактной пластины датчика, расстояние было не более 1 метра.

Общие принципы размещения датчиков протечки

Любой владелец помещения (жилого или офисного) знает, где проходят коммуникации водоснабжения или отопления. Потенциальных мест протечки не так много:

  • запорные краны, смесители;
  • соединительные муфты, тройники (особенно это касается пропиленовых труб, которые соединяются методом пайки);
  • вводные патрубки и фланцы бачка унитаза, стиральной или посудомоечной машины, гибкие шланги кухонных смесителей;
  • места подключения приборов учета (счетчиков воды);
  • радиаторы отопления (могут протекать как по всей поверхности, так и в местах соединения с магистралью).

Разумеется, в идеале, датчики должны быть расположены именно под этими устройствами. Но тогда их может быть слишком много, даже для варианта самостоятельного изготовления.

На самом деле, достаточно 1–2 датчиков на потенциально опасное помещение. Если это ванная комната, или туалет - как правило, имеется порожек входной двери. В этом случае, вода набирается, как в поддон, слой может достигать 1–2 см, пока жидкость не прольется через порог. В этом случае, место установки не критично, главное, чтобы датчик не мешал передвигаться по комнате.

На кухне датчики устанавливаются на пол под раковиной, за стиральной или посудомоечной машиной. Если возникнет протечка, она сначала образует лужицу, в которой и сработает сигнализация.

В остальных помещениях прибор устанавливается под радиаторами отопления, поскольку через спальню или гостиную трубы водоснабжения не прокладываются.

Не лишним будет установка датчика в нишу, по которой проходят стояки трубопроводов и канализации.

Наиболее критичные точки прорыва воды

При равномерном рабочем давлении, риск протечки минимален. Тоже самое относится к смесителям и кранам, если вы открываете (закрываете) воду плавно. Слабое место системы трубопроводов проявляет себя при гидроударах:

  • клапан подачи воды в стиральную машину при запирании создает давление, в 2–3 раза превышающее номинал водопровода;
  • то же самое, но в меньшей степени, относится к запирающей арматуре бачка унитаза;
  • радиаторы отопления (а также места их подключения к системе) зачастую не выдерживают тестовую опрессовку, которую проводят предприятия теплоснабжения.

Как правильно размещать датчики

Контактная пластина должна располагаться как можно ближе к поверхности пола, не касаясь его. Оптимальная дистанция: 2–3 мм. Если контакты разместить непосредственно на полу, будут возникать постоянные ложные срабатывания из-за конденсата. Большое расстояние снижает эффективность защиты. 20–30 миллиметров воды, это уже проблема. Чем раньше сработает датчик, тем меньше потери.

Справочная информация

Вне зависимости от того, приобретается система защиты от протечек в магазине, или изготавливается своими руками, надо знать единые стандарты ее работы.

Классификация устройств

  • По количеству вторичных защитных устройств на объекте (запорных аварийных кранов с электромагнитным приводом). Датчики протечки не должны перекрывать все водоснабжение, если запорные системы разнесены по потребителям. Локализуется только линия, на которой обнаружена протечка.
  • По способу подачи информации об аварии водопровода (системы отопления). Местная сигнализация предполагает нахождение людей на объекте. Дистанционно передаваемая информация организуется с учетом оперативного прибытия владельца или ремонтной группы. В противном случае, она бесполезна.
  • Способ оповещения: локальная звуковая или световая сигнализация (на каждом датчике), или вывод информации на единый пульт.
  • Защита от ложных срабатываний. Как правило, точно настраиваемые датчики работают эффективнее.
  • Механическая или электрическая защита. Пример механики - системы «Аква стоп» на подающих шлангах стиральных машин. Сигнализация на таких устройствах отсутствует, сфера применения ограничена. Самостоятельное изготовление невозможно.

Вывод

Затратив немного времени, и минимум средств, вы сможете обезопасить себя от серьезных финансовых проблем, связанных с потопом в квартире.

Видео по теме